
LDI: Learned Distribution Index for Column Stores
Dai-Hai Ton That, Mohammadsaleh Gharehdaghi, Alexander Rasin, Tanu Malik

School of Computing

DePaul University

Chicago, IL, USA

{dtonthat,mgharehd,arasin,tanu.malik}@depaul.edu

ABSTRACT
In column stores, which ingest large amounts of data into multiple

column groups, query performance deteriorates. Commercial col-

umn stores use log-structured merge (LSM) tree on projections to

ingest data rapidly. LSM improves ingestion performance, but in

column stores the sort-merge phase is I/O-intensive, which slows

concurrent queries and reduces overall throughput. In this paper,

we aim to reduce the sorting and merging cost that arise when data

is ingested in column stores. We present LDI, a learned distribu-

tion index for column stores. LDI learns a frequency-based data

distribution and constructs a bucket worth of data based on the

learned distribution. Filled buckets that conform to the distribution

are written out to disk; unfilled buckets are retained to achieve the

desired level of sortedness, thus avoiding the expensive sort-merge

phase. We present an algorithm to learn and adapt to distributions,

and a robust implementation that takes advantage of disk paral-

lelism. We compare LDI with LSM and production columnar stores

using real and synthetic datasets.

KEYWORDS
Learned Distribution Index, column-oriented, write-optimized, ap-

proximate clustering

1 INTRODUCTION
Column-oriented databases are a dominant backend DBMSes for

supporting business decision-making processes [10, 36]. Column-

stores, unlike their row-store counterparts, store entire columns

contiguously, often in compressed form. Applications using column-

oriented databases, typically, coalesce columns into groups. Using

column groups significantly reduces the amount of data to be read,

achieving high read performance for analytic (range-query) work-

loads in which most queries reference a column group.

In the era of big data, applications also ingest high volume data,

often, arriving at high velocity. Log-structured merge tree (LSM-

tree) logs incoming data in a buffer and periodically sort-merges the

data [27, 32] into larger sorted runs. Typically used in wide-column

NoSQL databases [2, 8, 18, 22], LSM-trees are increasingly available

in column-store databases for fast writes and high throughput. Each

group of columns in a column-store requires storage maintenance,

thus column-stores have a greater need for a write-optimized index

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN XXX-X-XXXXX-XXX-X.

than row-stores. However, using an LSM index structure, which it-

self has a significant write amplification in a column-store database

can also reduce query performance.

In a commercial system, such as Vertica [23, 33], all column

groups must be indexed with an LSM-tree to preserve the row order

in accordance with the primary key of the groups. Thus a write to

a column group must coordinate with writes in other associated

column groups for consistency. Queries, however, are often not

uniform across column groups. Some column groups are more

popular and queried more often than other less popular groups.

Query performance of popular groups rapidly deteriorates due to

concurrent writes across all groups, which defeats the purpose of

dividing them into groups in the first place, and is one of the most

important reasons why column-oriented databases are used.

One naive strategy is to split an insert into multiple individual in-

serts on column groups; this, however, will forsake the consistency

and row order between column groups. An alternate strategy is

to optimize the expensive sort-merge phase of LSM-trees. The key

idea is that a fewer I/Os during sort-merge will lead to improved

query performance and maintain consistency.

Current methods optimize this phase by adding summary struc-

tures within the buffer [7], improving when to merge [13, 14], and

by measuring overlaps between buffer and on-disk data [4]. In ev-

ery proposed approach, however, the sort-merge phase sorts all
key values at periodic intervals of time. We show, analytically and

experimentally, that this complete sorting of keys causes a large

fraction of the I/O in an LSM-tree. In column stores this increase

in I/O during inserts, reduces concurrent query performance, but,

more importantly, this I/O due to sorting is redundant for answer-

ing analytical workloads. Our strategy, thus, is to eliminate the

sort-merge phase of an LSM-tree and sort the incoming data ap-
proximately. The advantage of approximate sorting is that unlike

LSM we do not need to wait for periodic intervals to merge and

can write out incoming data as fast as it arrives; the disadvantage

is that we must know in advance if the data being written out is

sufficiently sorted.

In this paper, we present LDI, a low cost index for column stores,

which logs data based on a learned distribution of data. If the incom-

ing data conforms to the learned distribution, and the distribution

remains stable, no further sorting will be needed for logged disk

blocks. If the incoming data does not conform to the distribution,

disk blocks will be approximately sorted and will need to be reor-

ganized. We show that for real datasets, such a strategy localizes

the reorganization instead of performing an entire sort-merge as

in an LSM-tree.

LDI constructs a distribution similar to a dynamic histogram.

We present an learning algorithm that decides when to adjust the

intervals based on incoming data, and show how interval counts can

1

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

Figure 1: Sample data D to insert.

be maintained incrementally. LDI has the advantage of writing disk

blocks as soon as data arrives. We present an I/O handler that takes

advantage of in-built parallelism in HDD and SSD storage devices

to support such a strategy. Finally we present an extensive set of

experimental results comparing LDI with LSM and commercial

column databases, using both real and synthetic datasets.

The rest of this paper is organized as follows. We present an

example in Section 2. Section 2.1 analyses LSM-tree performance

on column stores experimentally and analytically. We introduce

learned distribution index structure (LDI) in Section 3, and its im-

plementation details in Section 4. We show the experiments in

Section 5, and discuss about the related work in Section 6. Finally,

we conclude the paper in Section 7.

2 AN EXAMPLE: LSM VS LDI
In this section, we present an example to contrast LSM-Tree and

LDI approach. There are two types of LSM trees, leveled (proactive

merging) and tiered (delayed merging) [13, 21]. We illustrate leveled

LSM tree in this example; tiered LSM tree example is presented in

Appendix 8.1. We consider the costs of both tiered and leveled LSM

trees throughout this paper.

Figure 1 lists a sequenceD of 32 incoming tuples (a tuple consists

of a key and data, although only the key is shown) and the order

in which they arrive. LSM tree periodically merges sorted runs

of tuples into larger sorted runs either in the same level or in the

higher level of the structure. Figure 2a shows the state of leveled

LSM tree just before and just after a merge. The data arrives at

L0, or the in-memory buffer with a size B = 4 (4 tuples). LSM is

configured with a level ratio of T = 3 (representing the maximum

size ratio between levels in LSM). If a merged level is full, LSM

merges data runs at a higher level.

Figure 2a illustrates five merging steps performed by the LSM ap-

proach. The first four tuples (9, 10, 3, 18) are already sorted in mem-

ory andwritten to disk at L1 before step 1. In step 1, the sorted buffer
(1, 13, 20, 24) is merged with L1 sorted run (3, 9, 10, 18) to write out

the sorted sequence of eight tuples (1, 3, 9, 10, 13, 18, 20, 24) at L1. A
step can trigger multiple consecutive merges: for example, in step

4, a merge between levels L0 and L1 leads to a full L1 level and is

thus followed by a merge between levels L1 and L2. The ratio of

data between levels is always maintained to be 3.

In cases where data is mostly sorted, LSM tree can choose to

append sorted runs instead of merging them. For example, in step

5, a merge between levels L0 and L1 can be replaced by appending

levels L0 and L1 instead. In this case, skipping the merge causes

a small reduction in data sortedness (only tuple 5 is out of order).

However, the likelihood of such near-sorted alignment depends on

the distribution of the data. Although LSM can benefit from such

distribution, it is not distribution-aware.

Intuitively, LDI designs the buffering process based on data dis-

tribution in order to ensure that data runs are mostly sorted and

can be appended without incurring a merging operation. Figure 2b

(a) Inserting the sample data D using leveled LSM trees.

(b) Inserting the sample data D using LDI.

Figure 2: The behavior of LSM and LDI.

illustrates LDI behavior for the data in Figure 1 with the same main

buffer capacity B = 4. Leaf ranges are skewed based on the input

data distribution. Each leaf bucket contains pointers to tuples stored

in the buffer. For example in the first row buffer contains tuples

(9, 10, 3, 8) and the interval [3 ÷ 6] points to tuple 3, while [13 ÷ 18]

interval contains pointers for tuples 9 and 10.

The maximum number of pointers in a leaf interval is n (in this

example n = 2, and a bucket can hold 2 tuples). Every time an

interval fills up, a new bucket is written to disk and cleared from

the buffer. For instance, at step 1, the leaf interval [7 ÷ 12] has two

pointers (9 and 10). As a result, a new bucket [9, 10] is created and

written to disk. Tuples 9 and 10 are removed from the buffer and

from the leaf storage. The last row in Figure 2b summarizes the

buckets written during the ingestion of input data.

2

LDI: Learned Distribution Index for Column Stores SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

Unlike LSM-Tree, LDI runs do not require a merge as the dis-

tribution already writes nearly-sorted buckets. Table 1 shows the

insertion cost of LSM-Tree and LDI in number of merges and the

number of I/O operations. Leveled-LSM requires 6 merges with 36

writes and 20 reads; Tiered-LSM requires 2 merges with 28 writes

and 8 reads. Meanwhile, LDI does not require any merges. The

number of writes is equal to the total number of written buckets

(32/2 = 16 buckets)

Table 1: Merge cost with different methods

Leveled-LSM Tiered-LSM LDI

#of merges 6 2 0

#of I/Os (Writes) 36 I/O 28 I/O 16 I/O

#of I/Os (Reads) 20 I/O 16 I/O 0 I/O

Next, we examine read query performance using key-range

queries. Without loss of generality Q1, Q2 and Q3 have the key-
ranges [10, 12], [19, 20] and [14, 20], respectively. Table 2 presents

the number of I/Os needed for each query. Tiered-LSM requires

more I/O than both Leveled-LSM and LDI in all three queries.

Leveled-LSM exhibits the best performance, but LDI query per-

formance is equivalent for Q1 and Q3 and is only one I/O higher

than Leveled-LSM for Q2.

Table 2: Query cost with different methods

Range Query Leveled-LSM Tiered-LSM LDI

Q1 : [19, 20] 2 I/O 2 I/O 2 I/O

Q2 : [11, 12] 2 I/O 3 I/O 3 I/O

Q3 : [14, 20] 4 I/O 5 I/O 4 I/O

LDI data buckets can overlap because data is not strictly sorted

and does not use merges. Therefore, some queries will read extra-

neous data at a higher cost. Ultimately, the goal of LDI design is to

minimize these extra penalties by achieving good bucket compact-

ness.

2.1 An Experiment: LSM Vs LDI in Column
Databases

In the previous example we compared the performance of LSM trees

with LDI on a small example data. In this section, we analyze the

merge cost of LSM trees and measure it experimentally on columnar

databases.

Columnar databases. Columnar databases store data tables by

column where each column is stored separately. This allows a query

to access that precise data that it needs. In general, each column can

be stored separately, but this leads to high tuple reconstruction cost.

Column grouping (or projection in C-Store [33] or Vertica [23])

is one way to reduce the tuple reconstruction cost. The idea is to

group a subset of columns together, to benefit query operations that

accesses all these columns. This group of columns is called projection
in C-Store [33] or Vertica [23]. Column stores trade storage for

improved tuple reconstruction cost and query access. For instance, it

is possible to replicate columns across projections as well as support

a superprojectionwith all columns.We assume a simplified columnar

store model in which there are partitioned projections with no

replication of columns across projections, and no superprojections.

LSM tree merge cost.We analyze the cost of levelling and tiering

merge policies in LSM trees, which have not been mathematically

formulated before. Merge policies are recursively defined and are

initiated based on a pre-defined ratio between two consecutive

levels.

• The levelling merge policy sort-merges whenever a level is

full with previous runs in the next higher level.

• The tiering policy, on the other hand, is delayed merging of

runs; it appends whenever a level is full with previous runs

in the next higher level but sort-merges the runs only if the

next higher level is determined to be full.

Table 3: Notations used in this paper

Parameter Description

N The total number of data entries

B The buffer size (Level L0)
M = ⌊N /B⌋ The total number of buffers

T The ratio between two consecutive levels

L = ⌊loдTM⌋ + 1 The total number of levels

mV ,mR
The total number of merges

in Leveled/Tiered-LSM

mV =

L−1∑
i=1

(⌊
M

T i−1

⌋
−

⌈
M

T i

⌉)
(1)

mR =

L−1∑
i=1

⌊
M

T i

⌋
(2)

Equation 1 and 2 present the number of merges of leveling and

tiering merge policy as a truncated geometric series defined based

on T , the ratio between two consecutive levels and M , which is

the total number of buffers. Tiered-LSM (Equation 2) only merges

the data whenever a level on disk is full,

⌊
M
T i

⌋
represents the total

number of times level i gets full for a given N entries Meanwhile,

Leveled-LSM merges at level i whenever level i − 1 (including L0)

gets full and data in level i is not empty. In Equation 1,

⌊
M

T i−1

⌋
shows the number of times data is flushed from level i − 1 to level

i and
⌈
M
T i

⌉
shows the number of times the data at level i is empty

(no merge is needed in case of level i is empty.

Clearly tiered LSM causes fewer merges than levelled LSM but in

both the cases the number is dominated by the constant factors that

are multiplied on a per level basis. These constants play a significant

role in a column database as shown in Figure 3. In this experiment

we measure the total number of merges with different size of data

in a columnar store. The column store has two configurations: 5

projections with each projection has 3 columns, and 1 projection

with all columns. As shown in this Figure, while the number of

merges of single LSM-Tree is quite reasonable, those of multiple

3

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

Figure 3: The total number of merges during data-loading
with tiered and levelled LSM trees. Multiple LSM trees on
columnar stores, single LSM tree on one column and LDI.
The columnar has 5 projections each of projection has 3
columns; whereas on-column keep the data in only one pro-
jection (all columns)

LSM-Trees are multiplied by the factor of the number of projections

and the T factor. In contrast, a LDI has close to zero merges. We

relate the number of merges to read/write costs in Appendix 8.1.

3 LEARNED DISTRIBUTION INDEX
We present LDI, our distribution-aware index, in this section. The

basic idea in LDI is to use some fixed amount of training data to

learn a given distribution, and then continuously update the learned

distribution as new data comes in.

LDI is conservative in updating its distribution, since a change in

the distribution will affect query costs. In order to learn, it maintains

two distributions: a global distribution based on which buckets

are created, and a local distribution, which reflects the state of

incoming data. Local distribution may change more rapidly but

bucket creation is determined by the global distribution. Only when

sufficient evidence about the local distribution is collected, and

a drift is detected, LDI updates the global distribution. In LDI a

normalized frequency is used to create a distribution and is thus

similar to V-optimal histograms but unlike dynamic V-optimal

histograms [6], which keep tuning configurable, LDI decides when

to tune.

We now describe in detail how the distribution is initialized and

updated based on drifts. Because of differences between local and

global distributions, LDI buckets are only approximately sorted.

Since buckets are approximately sorted queries typically read more

data than required. We present an I/O handler to improve query

performance and a measure of sortedness which LDI provides to the

user for undertaking, if necessary the clustering process (complete

sorting of data).

3.1 Initializing a distribution
In LDI, a distribution is represented as an array of n contiguous

intervals {[bi ,bi+1)}, wherebi andbi+1 are interval boundaries. For
an interval, we maintain two quantities: a normalized frequency,

denoted dis and a count of values denoted load .

These interval boundary values and frequency counts are initial-

ized by inserting a fixed amount of data into a k-ary B
+
-tree, and

using the min/max key values in the leaf nodes as interval bound-

aries, and determining how many values fall in these leaf nodes.

The value of k of a B
+
-tree determines the number of intervals we

create. In the beginning, we decided to create a two level tree, and

a high k to create wider intervals.

3.2 Updating a distribution
Table 4 summarizes the variablesmaintained by LDI. Interval bound-

aries and frequency counts are updated as new data arrives. Local

(denoted by L) and Current (denoted by C) have no recorded quan-

tities (distribution or load) to begin with but its determines the

frequency counts from a time window t with size data entries. For
each time window t , we record the normalized frequency and the

count of keys falling into each interval in C . Once time window t
is ended, the recorded normalized frequency C .disi , and the total

count C .loadi are accumulated. These local quantities are accumu-

lated into local normalized frequency, denoted L.disi and a local

count of values denoted L.loadi .
We define the distribution drift(L.disi ,G .disi) as the ratio be-

tween the weighted estimate of the global normalized frequency

and the local normalized frequency for the i
th

interval. Intuitively, a

ratio of 1 represents that the data distribution has not changed and

deviation from 1 represents an increase or decrease in the amount

of data seen for this interval. If the drift is positive, more data is

arriving, and we might be creating buckets that are too narrow;

while if the drift is negative, less data is arriving, and we might be

creating buckets that are too wide.

drift(i) =
wLi ∗ L.disi +wGi ∗G .disi

G .disi
(3)

Table 4: Notation used in this paper

Parameter Description

G .bi Global boundary at interval ith

G .disi Global normalized frequency at interval ith

G .loadi Global count at interval ith

L.bi Local boundary at interval ith

L.disi Local normalized frequency at interval ith

L.loadi Local count at interval ith

C .bi Current boundary at interval ith

C .disi Current normalized frequency at interval ith

C .loadi Current count at interval ith

drift(L.disi ,G .disi) The change in the distribution (local vs global)

at interval ith

Φmax
The upper boundary (split) threshold

Φmin
The lower boundary (merge) threshold

size The total number of data tuples (data entries)

in a time window

counti The number of data tuples (entries) falling to

the interval ith in a time window

4

LDI: Learned Distribution Index for Column Stores SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

Figure 4: Online Interval tuning Algorithm applied on the interval [7 ÷ 12] of LDI shown in Figure 2b.

The weights for global and local normalized frequency are based

on the ratio between the amount of data observed so far. More data

represents stronger evidence for L or D:

wLi =
L.loadi

L.loadi +G .loadi
(4)

wGi =
G .loadi

L.loadi +G .loadi
(5)

where L.loadi , L.disi , G .loadd and L.disi are described in Table 4.

This relative distribution drift(i) is used to determine whether the

interval ranges should be modified. While drift remains near 1, no

change is needed; but as the value goes above Φmax
or below Φmin

,

the intervals are split or merged accordingly:

Action(i) =

drift(i) ≥ Φmax , Split.

Φmax > drift(i) > Φmin , Skip.

drift(i) ≤ Φmin , Merge.

(6)

where the action applies to the i
th

interval. In practice, our current

thresholds were set as Φmax = 2 and Φmin = 0.3. In Algorithm 1,

after each time window t , once the counti data tuples are accumu-

lated to local L, the drift for interval i will be calculated to determine

whether a split/merge is needed (Phase2 – lines [11–25]). If a split

is required at an interval i (lines [12–18]), the current data distri-
bution in local L at this position will be accumulated to the global

distribution G, then split the current interval. Similarly, if a merge

is required at an interval i (lines [20–25]), the current data distribu-
tion in local L at this position will also be accumulated to the global

distribution G (lines [20–24]), then merge the current interval to

its left or its right. Finally, if there is any change in the global G,
then we propagate this change to the current distribution C (lines

[26–27]), to make sure the intervals in C,L,G are same.

Figure 4 shows an example of how distributions are updated

and applied to the interval boundary [7 ÷ 12] (the third interval

i = 3) of LDI shown in Figure 2b. In this example, we consider

three time windows t = 1, t = 2 and t = 3, each time window

has 16 data entries. The sample data is shown in Figure 1. The

Figure 4(a) shows the behaviors of the algorithmwhen receiving the

first 16 data entries. Since in this first 16 data entries (see Figure 1),

there are 4 keys falling to [7, 13), the current normalized frequency

C .dis3 = 4/16 = 25% and the current count C .load3 = 4. These

Algorithm 1: Dynamic-interval tuning process

1 Interval-Tuning ():
input :Global partitioning G, Local distribution O ,

Current distribution C
output :New G, O

2 G = {G .bi ,G .disi ,G .loadi } //Global intervals

3 L = {L.bi ,L.disi ,L.loadi } //Local intervals

4 C = {C .bi ,C .disi ,C .loadi } //Current intervals

5 Phase 1: Accumulate the current distribution to local

intervals

6 foreach ({L.disi ,L.loadi }, {C .disi ,C .loadi }) in {L,C} do
7 L.disi = (L.disi * L.loadi +

8 C .disi * C .loadi) / (L.loadi + C .loadi)

9 L.loadi += C .loadi

10 Phase 2: Check the drift of local global, tune the global

intervals if necessary

11 foreach ({L.disi ,L.loadi }, {G .disi ,G .loadi }) in {L,G} do
12 if (drift(i) ≥ Φmax) then
13 G .disi = (G .disi * G .loadi +

14 L.disi * L.loadi) / (G .loadi + L.loadi)

15 G .loadi += L.loadi
16 L.loadi = 0

17 L.disi = 0

18 Split current interval i

19 else if (drift(i) ≤ Φmin) then
20 G .disi = (G .disi * G .loadi +

21 L.disi * L.loadi) / (G .loadi + L.loadi)

22 G .loadi += L.loadi
23 L.loadi = 0

24 L.disi = 0

25 Merge the current interval i to the left or to the

right

26 if there is at least a split or merge in G then
27 C = G

5

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

current distribution and load will be accumulated to the local L.
Next, the distribution dri f t(L.dis3,G .dis3) = 1.67. Since this dri f t
value does not go above Φmax

or below Φmin
, there is no split or

merge after this time window.

In the next time window t = 2 (see Figure 4), since there are 5

keys falling to [7, 13), the current normalized frequency C .dis3 =
5/16 = 31.25% and workload C .load3 = 5 will be accumulated

with the local (new values: L.dis3 = 28.47% and L.load3 = 9). Since

dri f t(L.dis3,G .dis3) = 2.19 is higher than Φmax = 2, there will be

a split in this interval 3 after this time window. Figure 4(c) shows the

new intervals after the split and the new values in those intervals

when new data arrives.

3.3 LDI Maintenance
LDI writes buckets based on the global distribution, but sometimes

may need to perform some in-memory merging to write out buck-

ets. Going back to our example in Figure 2b, step 7, data buffer

(1, 29, 8, 4) is full but none of the leaf ranges are full. As a result,

LDI has to combine data from two sibling leaves with intervals

[1 ÷ 2] and [3 ÷ 6] to write a bucket [1, 4]. This bucket is now only

approximately sorted because it contains a range of data that is

larger than a single leaf range. Similarly, in step 12, a non-compacted

bucket [12, 16] is created that will have to be rebuilt. In both these

situations basically the data that arrived fell into each interval, but

there was not enough data to create a compacted bucket. Based

on pigeon-hole principle such a situation is non-avoidable even

if the global distribution is perfectly learned. In these cases, non-

compacted bucket will be recreated and will need to be compacted

by a data maintenance process, which reads buckets and writes

buckets.

Merging: As defined in [35], the compactness of an approxi-

mately sorted dataset is defined through the average relative bucket

range factor (ARB):

ARB =

∑K
i=1

���Ranдe (Bucketsor tedi

)���∑K
i=1

���Ranдe (BucketLDIi

)��� (7)

ARB is the ratio of the sum of the range between minimum and

maximum values in a bucket for perfectly sorted data versus the

range between minimum and maximum values in the same-sized

LDI bucket. Range is defined as the difference between largest and

smallest value in a bucket. Data is accessed in bucket units. Thus,

if approximately sorted data does not have any values in a wrong

bucket ARB will have a perfect score of 1.

LDI performs a sort-merge operation by combining all non-

compacted buckets, in order to approximate an improved ARB

measure. In the context of LDI, a bucket is considered to be non-

compacted if it has at least one data key out of the key range where

this bucket is indexed (i.e., the bucket had to be merged with an-

other leaf interval). For instance, as shown in the Figure 2b, buckets

[1-4] and [12-16] are non-compacted bucket as the data key 4 and

16 are out off the key ranges (i.e., [1-2] and [7-12]) where those

buckets are indexed.

4 LDI ARCHITECTURE
Figure 5 give an overview architecture of LDI: (i) Data-clustering

component generates buckets with data distribution as discussed

in Section 3; (ii) Bucket indexing indexes the buckets using interval

B-Tree (Section 4.1; and (iii) I/O handler (Section 4.2). LDI receives

data tuples and generates buckets. The created buckets are then

written to disk by I/O handler, while buckets metadata are indexed

in Bucket indexing.

Figure 5: The overview architecture of LDI.

4.1 Bucket indexing for Query Performance
Buckets generated by LDI are stored on disk and indexed by interval

B-Trees [1] (i.e., IB-Trees), in order to further improve the query

performance. In LSM typically bloom filters are used to improve

query performance. Since analytic workloads are predominantly

range queries, an IB tree is more suitable. Incoming buckets are

indexed using their key ranges. The range of values [L,H] of a

node is the key range of the low key boundary of buckets in its

sub-tree. Meanwhile,Maxi of a node indicates the highest value of
the high key boundary of buckets in its sub-tree. Using this max

value bounds the search.

Figure 6: The data structure of IB-Tree.

Figure 6 illustrates the adaptation of IB-Tree applied in our con-

text. The size of node is a factor of page size (i.e., k ∗ 4KB) so that

all nodes in IB-Tree can be efficiently stored on disk. The node’s

entry in a IB-Tree keeps its data (i.e., BucketPointer) 1 in all types

of nodes (leaf or non-leaf nodes).

There are a few of advantages of using IB-Tree. First, IB-Tree

indexes on the bucket (i.e., group of tuples) instead of projection

1BucketPointer points to physical bucket stored on disk (composed of f ile ID
and of f set).

6

LDI: Learned Distribution Index for Column Stores SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

tuple, its size is reduced by the number of tuples in a bucket. Second,

it reduces the time to search for a bucket from O(N) to O(loдN) [1,

11] (similar to the search cost in B-Tree). Third, IB-Tree is designed

for either full or partial loading in memory.

4.2 I/O handler
In most computer system, the storage layer is the major bottleneck;

more so with large-scale database systems. While reducing I/O

amount improves system performance, the strategy for performing

I/O operations also plays crucial role in determining execution time.

Current solutions optimize the I/O operations by favoring large

granularity and reducing random I/O [25, 30, 34]. The I/O handler

is designed to further improve I/O through the following principles:

Avoid interference between concurrent read and write oper-
ations: Many DBMSes support concurrent execution of insert and

read query requests. However, recent experiments show that mix-

ing of parallel reads and writes has a strong negative impact on

throughput of storage devices [9]. In our approach, concurrent

insertion and read queries are allowed, but there is no mixing of

insertion and read queries.

Concurrent transactions: Concurrent handling of queries can be

exploited to eliminate transfer of data which is redundant among

requests. Although multiple identical queries sent to a DBMS at

the same time are unlikely, it is common to have overlap in data

access by different concurrent requests. To reduce query read cost

multiple requests for overlapping data is eliminated by combining

requests for the same buckets.

Moreover, requests for different data that are physically stored

in close proximity should be grouped, since modern storage de-

vices can efficiently combine such access. To this end, we collect

the list of desired buckets and group them into co-located bucket

groups (note that bucket is the unit of access, interchangeable with

block). Since random I/O access incurs additional overhead, we au-

tomatically switch to reading an entire group of buckets (including

some extraneous data), based on a threshold θ . The θ threshold is

determined for each specific storage device, using the following

formula:

θ =
TRead (Group)

TRead (Bucket)
(8)

where TRead (Group) is the time to read a bucket group and TRead
is the time to read a bucket.

Exploit internal parallelism of storage devices: We explain

how we choose the thread levels in SSDs. SSD has many internal

levels of parallelism. Different manufactures or even different de-

vices products may have variations in channels, chips, dies, planes,

allocation schemes (how data is allocated on SSD) and so on. Fur-

thermore, as a user, we have no control on how data is physically

placed on SSD, which depends on firmware implementation and

current usage of SSD.

Nevertheless, choosing the right number of threads can improve

the number of planes used, taking advantage of high-bandwidth

I/O channel bus and parallelism channel. Given SSD specifications,

Formula 9 defines the number of threads used in ourmodel. The idea

is to increase the probability of using many planes, while keeping

the number of threads low due to the overhead of switching threads.

Nthread =
Nchannel ∗ Nchip ∗ Ndie ∗ Nplane

λ
(9)

Where Nchannel , Nchip , Ndie and Nplane are the number of

channels, chips, dies and planes in an SSD and λ is the overhead

costs of planning, switching, and buffering temporary results of

multiple thread in an SSD-controller.

In theory, CPU and main memory overheads in an SSD controller

are considered negligible. Thus, in our evaluation we set λ = 1. In

practice, these costs may have a noticeable effect on performance

(λ > 1). In order to determine a specific value of λ for a drive, one

would rely on an SSD-specific third party benchmark. For HDDs,

we rely on Native Command Queuing (NCQ) for sending parallel

requests.

5 EVALUATION
Purpose. Our experiments 1) demonstrate the significant im-

provement in data loading performance for LDI index, 2) compare

read query performance for LDI index to current state-of-the-art
approaches, and 3) present the benefits of parallelism achieved by

our I/O handler in LDI.
Setup. In our evaluation, we implemented two versions of basic

column-oriented DBMS with LDI in C++: one without disk-level

parallelism (LDI) and other with our I/O handler parallelism opti-

mization (LDI_Par). We also implemented a basic column-oriented

DBMS (Sorted_Col), in which all projections are sorted on the in-

dexed key. Queries executed in Sorted_Col are expected to have the

best possible performance as columns are fully sorted. We also de-

ployed a column-store with LSM-Tree-like indexing (Col_LSM-like)
that used the same datasets.

Systems. Experiments were conducted on a desktop computer

with an Intel Core i7-3770 3.4Ghz (8 cores), 8GB of main memory, 1

TB SATA HDD and 256 GB Intel SATA SSD 600p, and Ubuntu 16.04

64-bit operating system.

Table 5: NYC dataset sizes.

Table Records(M) Size(GB)

T_A 1.5 0.3

T_B 15 3

T_C 30 6

T_D 59 11.8

T_E 148 29.6

Dataset & Queries. Experiments used real-world data from the

New York City Taxi (NYC) dataset [31]. Table 5 summarizes the

five table sizes used. Three different projections were deployed for

each indexing approach: Projection1 (29 columns, indexed on ID),
Projection2 (4 columns, indexed on trip_distance) and Projection3
(5 columns, indexed on total_amount).

Table 6 summarizes the set of read queries used to measure per-

formance. Key range refers to a delta in the indexed attribute value,

i.e., range between X and X+ < keyranдe >, where X refers to the

value of the indexed attribute (trip_distance , ID, or total_amount).

7

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

Selectivity refers to the ratio between the number of query result

tuples to the total database tuples.

Table 6: Query Range and Selectivity.

Range Query Key Range Selectivity

Q1 0.003 0.003

Q2 0.005 0.006

Q3 0.020 0.015

Q4 0.030 0.026

Q5 0.055 0.050

Q6 0.065 0.067

Q7 0.075 0.083

Q8 0.085 0.100

Q9 0.100 0.130

Q10 0.110 0.150

5.1 Loading Costs
Figures 7 and 8 summarize the loading costs for the three ap-

proaches on both HDD and SSD, respectively. To provide a baseline

reference, we also include WriteMAX , the maximum sequential

write speed for each storage device. The Sorted runtimes include

the load time plus a one-time clustering operation performed at the

end of a bulk-load. Similarly, the Col_LSM-like runtimes include the

costs for reorganizing data in all projections. It’s worth emphasiz-

ing that the results are for one-time bulk-load ingestion, whereas

continuous data ingestion or incremental data loading will likely

lead to additional clustering/optimization overheads in both Sorted
and Col_LSM-like. Meanwhile, LDI is an on-line process that does

not incur any additional overheads for incremental data loading.

Figure 7: Loading costs on HDD for different tables.

HDD. We observed that the load times for LDI were within a

factor of two compared to the disk capacity WriteMAX . LDI sig-
nificantly improved data load time for the column-oriented DBMS

on an HDD; it was, on average, 26 times faster than Sorted across

all tables (note that the load times are shown on a logarithmic

scale). The advantage of LDI comes from avoiding data mainte-

nance and clustering overhead during ingestion. Sorted includes

the loading time and a cost of clustering at the end of bulk-loading.

Similarly, loading runtimes in Col_LSM-like include merge costs.

Moreover, incremental loading of data (versus a one-time bulk load)

can only degrade the performance of both Sorted and Col_LSM-like.

In contrast, LDI load cost is always based on the amount of data it

ingests.

Figure 8: Loading runtimes on SSD with different tables.

SSD. All runtimes are significantly improved on SSD (see Fig-

ure 8) because the throughput of SSD is much higher than through-

put of HDD. As with HDD, LDI significantly outperforms Sorted
and Col_LSM-like. The advantage of LDI in SSD load times is similar

to its advantages in the HDD evaluation, because the overheads of

Sorted and Col_LSM-like approaches are caused by mostly sequen-

tial extra I/O operations.

5.2 Read Query Performance
LDI eliminates clustering reorganization (sort and merge) costs

associated with data loading by creating approximately clustered

buckets. Since LDI reads queried data in bucket units, it may read

extraneous tuples stored in the buckets that contain some of the

data in queried range. As a result, LDI queries may incur a small

penalty in comparison to approaches that strictly cluster data. In

this evaluation, we compare LDI to the best possible query perfor-

mance of Sorted. We ran queries against two different projections:

Projection1 (29 columns) and Projection2 (4 columns) with all com-

petitors: LDI, LDI_par (with parallelism optimization), Sorted and

Col_LSM-like. Query runtimes for both HDD and SSD are shown

in Figure 9.

The first observation is that Sorted typically has the fastest query

runtimes in queries on both HDD (i.e., Figure 9(a) and 9(c)) and

SSD (i.e., Figure 9(b) and 9(d)). This is because data is perfectly

sorted in Sorted. LDI_par is only slightly slower than than Sorted
on smaller queries and on HDD (see Figure 9 (a) and (c)). However,

LDI_par actually outperforms Sorted with larger queries, especially

on SSD (see Figure 9 (b) and (d)). LDI_par can outperform Sorted

by leveraging our parallelism optimization, which is most effective

on larger queries (in terms of amount of data) and on SSD.

As expected, the query runtimes of LDI (without parallelism) are

slightly slower than those of Sorted because: 1) LDI data is approxi-
mately sorted in buckets, causing it to read some extraneous data

that is not required by the query, and 2) read operations are done in

bucket granularity instead of sequential reads in Sorted. However,
on SSD, when the performance of random I/O and sequential I/O

are almost similar, LDI performance is better than Sorted with large

queries (see Figure 9 (c) and (d)). This comes from our I/O handler

in LDI that takes advantage of internal parallel mechanism on SSD.

Col_LSM-like shows the slowest query performance among eval-

uated approaches, for all tested queries and on both HDD and SSD.

8

LDI: Learned Distribution Index for Column Stores SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

Figure 9: Runtimes of different queries on HDD and SSD at different projections: (a) Runtimes on Projection1 with HDD; (b)
Runtimes on Projection1 with SSD; (c) Runtimes on Projection2 with HDD; and (d) Runtimes on Projection2 with SSD.

It takes long time to query Projection1 (see Figure 9(a) and 9(b)).

For better readability we only show the runtimes of queriesQ1 and

Q2, as other queries take even longer. Col_LSM-like runtimes on

Projection2 are faster (see Figure 9(c) and 9(d)), but still slower than
other methods.

5.3 Effectiveness of concurrence and parallel
processing

Figure 10: Runtime improvements on HDD and SSD.

As shown in Section 5.1, parallelism has a strong impact on

ingestion performance. The experiments in this section aim to

evaluate the effectiveness of concurrence and parallel processing

in read queries. In order to show how LDI behaves in presence

of concurrence requests, by de-duplicating overlapping data and

by leveraging concurrency, we created a set of 40 queries with

selectivity ranging from 0.2% to 5%. We then run these queries,

varying the number of threads from 1 to 32. Figure 10 presents

the runtime improvements (percentage improvement on y-axis) for

both HDD and SSD as the number of threads increases (x-axis).

As Figure 10 shows, while improvement increases (the runtime

decreases) as the number of threads increases, the best number

of threads in HDD is 8 or 16 threads (improvement of 9% or 11%),

while on SSD the best number of threads is 16 or 32 (improvement

of 53%). The results confirm that 1) concurrent processing improves

query performance both in HDD and in SSD, and 2) SSD has a

greater capability for exploiting concurrence compared to HDD.

We also observe that increasing the number of threads eventually

becomes counterproductive. For example, in our experiments 32

threads on HDD and 64 threads on SSD lead to query deterioration.

In fact, the effectiveness of concurrence comes from parallelism and

de-duplication. However when as the number of threads increases,

the overheads of multi-threading will negate the benefits of con-

currence. Furthermore, a large number of threads may require a

significant amount of memory to store temporary query results.

In order to examine the impact of the number of threads in

reading/writing from/to storage devices, we vary the number of

threads that are allowed to read/write at the same time using queries

from Table 6. Figures 11 and 12 show the runtimes of different

queries as we vary the number of parallel threads (x-axis shows the

number of threads, y-axis shows the execution time in seconds).

Figure 11 presents the results for Q1 through Q5 (queries de-

scribed in Table 6), while Figure 12 shows the results for Q6 through

Q10. Both HDD and SSD work better with multiple threads. The

best number of threads on HDD and on SSD is 8 and 16 threads,

respectively. Continuing to increase the number of threads offers

very little benefit or potentially begins to slow queries down due

to the overhead costs of multi-threading.

Additionally, the results in Figures 11 and 12 further confirms

that SSD has better support for parallelism as compared to HDD,

since the benefits of parallelism are larger on SSD vs HDD. In

particular, the improvement of parallelism optimization on SSD

9

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

Figure 11: Parallel on HDD.

Figure 12: Parallel on SSD.

is around 54% (at 16 threads), while on HDD the improvement is

around 25% (at 8 threads).

6 RELATEDWORK
In this section, we first present some prominent columnar stores

in Section 6.1, then summarize some work about log-structure

merge tree, i.e. the most wide-applied write-optimized indexing

methods, in Section 6.2. Last, we discuss some related work about

data distribution in Section 6.3.

6.1 Columnar Stores
The ideas of column-oriented hierarchical have been widely ap-

plied in both academic [19, 33] and commercial [23, 24, 29, 37].

MonetDB [19] is an in-memory columnar relational DBMS that

leverages the large main memories of modern computer systems

in query processing, while the database is persistently stored on

disk, showing outstanding performance. However, similar to other

in-memory column-oriented DBMSes such as SAPHANA [16], Pelo-

ton [3], DB2 BLU [29] or Microsoft SQL Server Column stores [24],

its application is limited due to many reasons: (i) require huge

amount of main memory; and (ii) the volatility of main memory.

Recently, in the same context as MonetDB, Vectorwise [37] was

proposed, aiming at vectorizing execution to operate on vector of

data instead of separate tuples and further improving in storage

model. However, it has some drawbacks like MonetDB, as it’s in-

memory columnar store. Furthermore, most of these approaches are

designed for query-mostly workload. Continuous insertion work-

flows often lead to dramatic degradation in performance.

C-Store [33] and its recent commercial extension (i.e., Vertica [23])

are on-disk columnar databases that apply different sort orders on

each projections (i.e., groups of columns), different compression

method for each column in order to improve the compression ratio,

fully support aggregation operations on compressed data. However,

similar to other column stores, incremental data loading may re-

quire heavy data clustering/re-organization processes. Even though,

these processes can be run as background processes in Vertica, it

negatively impacts DBMS performance.

6.2 Log Structured Merge Trees
While many DBMSes including columnar stores suffer from poor

write performance, the log-structure merge tree (LSM-Tree) [27, 32]

is a common solution for this problem. Themain idea is to transform

small random writes into large sequential writes by buffering and

reorganizing data in a large buffer before flushing them to disk at

a batch. Data on disk is structured as many levels, and data will

be merged to the higher levels as the data grows. Compared to

clustered index (or primary index) requiring clustering process

every time a new data is inserted, LSM-Tree accumulates loading

data in the buffer (level 0) before merging it to higher levels on disk.

This delaying technique significantly reduce the re-organization

cost as in clustered index. Moreover, all operations in LSM-tree are

done in batch (read/write with large I/O), making its performance

much better in any type of storage environment (e.g., HDD or SSD).

Due to those reasons, LSM-Tree has been widely applied not

only in columnar DBMSes, but also in other types of DBMSes such

as relational DBMSes, Columnar stores or Key-Value stores. For

example, LevelDB [18], BigTable [8], HBase [2], Cassandra [22]

are some key-value stores apply LSM-Tree, while MySQL [28] and

SQLite4 [12] are relational DBMSes that support LSM-Tree indexing.

Other enhanced variations of LSM-Tree used in Monkey [13] and

Dostoevsky [14] to further improve the DBMS performance by

using BloomFilter and changing merging policies. However, the

main drawback of LSM-Tree, i.e., large write amplification
2
still

remains.

Similarly in TRIAD [5], couple of improvement techniques have

been applied to reduce the write amplification such as (i) keeping

the hot-entries longer in the main memory; (ii) changing the tired

merging policy by considering the overlapping between runs in a

level; and (iii) optimize the write in commit-log. Unfortunately, the

gain comes with a price. Lower write amplification is archived by

using a variation of tiered policy (i.e., favor the write performance)

and by scarifying the look up performance (the higher the merge

overlapping threshold, the more degration in look up). Furthermore,

similar to Dostoevsky [14], this method only reduces the high write

amplification of LSM-Tree, but cannot completely avoid this issue.

2
Write amplification is the ratio of total write IO performed by the DBMS to the

total data in the DBMS. High write amplification increases the loading cost on storage

devices.

10

LDI: Learned Distribution Index for Column Stores SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA

6.3 Data distribution
Knowing data distributions is crucial important in database systems

and data streaming. However, accurately record data distributions

is expensive, leading to many approaches for approximately capture

data distribution (called incremental histograms) [15, 17, 26]. For

example, Gibbons et al. [17] proposed an approximate histograms

maintained in the present of data insertion and a merge and split

technique for adjusting histogram buckets according to the data

insertion. Meanwhile, Mousavi et al. [26] introduced an approxi-

mate approach for incrementally approximate compute equi-depth

histograms over sliding windows.

Those histogram methods have been applied in many aspects

of database systems such as selectivity estimation (query optimiza-

tion), approximate query answering, join query execution. How-

ever, as mentioned in [6, 20], traditional indexing using B
+
-Tree

is not suitable to serve as non-equi-depth histograms. Particularly,

straightforwardly applying basic index trees to serve non-equi-

depth histograms should significantly degrade indexing perfor-

mance due to its unbalanced structure or low node occupancy [6].

To the best of our knowledge, there is no work applying histogram

information in database indexing.

7 CONCLUSION
In this paper, we presented a learned distribution index (LDI) struc-

ture as an alternative for LSM tree structure, which is advocated

for ingesting data rapidly into projections of a colmumnar database

to improve insertion performance. Learning distributions, as we

show, avoids the expensive sort-merge phase of LSM. Data inges-

tion performance, therefore, increase more than order of magnitude

in comparison with other methods while query performance is as

comparable as LSM-like indexing approaches. The cost of learning

distribution may lead to some non-compacted buckets, causing the

LDI maintenance. However, this cost of maintenance is reasonable

as only the non-compacted buckets are need to be inverted.

REFERENCES
[1] Chuan-Heng Ang and Kok-Phuang Tan. 1995. The Interval B-tree. Inf. Process.

Lett. 53, 2 (Jan. 1995), 85–89. https://doi.org/10.1016/0020-0190(94)00176-Y
[2] Apache. [n. d.]. HBase. https://github.com/google/leveldb. ([n. d.]). [Online;

accessed 25-Mar-2019].

[3] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the Archipelago

Between Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD ’16.
ACM, New York, NY, USA, 583–598. https://doi.org/10.1145/2882903.2915231

[4] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng

Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating

Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores. In

2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,

Santa Clara, CA, 363–375. https://www.usenix.org/conference/atc17/technical-

sessions/presentation/balmau

[5] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng

Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating

Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores. In

2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX Association,

Santa Clara, CA, 363–375. https://www.usenix.org/conference/atc17/technical-

sessions/presentation/balmau

[6] Daniel Barbara, William duMouchel, Christos Faloutsos, Peter J. Haas, Joseph M.

Hellerstein, Yannis Ioannidis, H. V. Jagadish, Theodore Johnson, Raymond Ng,

Viswanath Poosala, Kenneth A. Ross, and Kenneth C. Sevcik. 1997. The New

Jersey Data Reduction Report. IEEE DATA ENG. BULL (1997), 3–45.

[7] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.

2018. Accordion: Better Memory Organization for LSM Key-value Stores. Proc.
VLDB Endow. 11, 12 (Aug. 2018), 1863–1875. https://doi.org/10.14778/3229863.
3229873

[8] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.

Bigtable: A Distributed Storage System for Structured Data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation -
Volume 7 (OSDI ’06). USENIX Association, Berkeley, CA, USA, 15–15.

[9] F. Chen, R. Lee, and X. Zhang. 2011. Essential roles of exploiting internal paral-

lelism of flash memory based solid state drives in high-speed data processing. In

2011 IEEE 17th International Symposium on High Performance Computer Architec-
ture. 266–277. https://doi.org/10.1109/HPCA.2011.5749735

[10] Columnar Database. 2019. Columnar Database: A Smart choice for data ware-

houses. https://www.columnardatabase.com/. (2019). [Online; accessed 25-Mar-

2019].

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[12] D. Richard Hipp. [n. d.]. SQLite4. https://sqlite.org/src4/doc/trunk/www/index.

wiki. ([n. d.]). [Online; accessed 25-Mar-2019].

[13] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal

Navigable Key-Value Store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 79–94.

https://doi.org/10.1145/3035918.3064054

[14] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-

Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous

Merging. In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ’18). ACM, New York, NY, USA, 505–520. https://doi.org/10.1145/

3183713.3196927

[15] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan. 2000. Dynamic Histograms:

Capturing Evolving Data Sets. In Proceedings of 16th International Conference on
Data Engineering (Cat. No.00CB37073). 86–. https://doi.org/10.1109/ICDE.2000.
839394

[16] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,

andWolfgang Lehner. 2012. SAP HANA Database: Data Management for Modern

Business Applications. SIGMOD Rec. 40, 4 (Jan. 2012), 45–51. https://doi.org/10.
1145/2094114.2094126

[17] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. 2002. Fast Incremental

Maintenance of Approximate Histograms. ACM Trans. Database Syst. 27, 3 (Sept.
2002), 261–298. https://doi.org/10.1145/581751.581753

[18] Google. [n. d.]. LevelDB. https://github.com/google/leveldb. ([n. d.]). [Online;

accessed 25-Mar-2019].

[19] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,

and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-

oriented Database Architectures. IEEE Data Engineering Bulletin 35, 1 (2012),

40–45.

[20] Yannis Ioannidis. 2003. The History of Histograms (Abridged). In Proceedings of
the 29th International Conference on Very Large Data Bases - Volume 29 (VLDB ’03).
VLDB Endowment, 19–30. http://dl.acm.org/citation.cfm?id=1315451.1315455

[21] Bradley C. Kuszmaul. 014. A Comparison of Fractal Trees to Log-Structured

Merge (LSM) Trees. White Paper (014).
[22] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized

Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35–40.

https://doi.org/10.1145/1773912.1773922

[23] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,

Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-store 7

Years Later. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1790–1801. https://doi.org/10.
14778/2367502.2367518

[24] Paul Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson, Mostafa Mokhtar,

Michal Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan,

Remus Rusanu, and Mayukh Saubhasik. 2013. Enhancements to SQL Server

Column Stores. In SIGMOD ’13.
[25] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi. 2010. Tree

Indexing on Solid State Drives. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 1195–1206.
https://doi.org/10.14778/1920841.1920990

[26] Hamid Mousavi and Carlo Zaniolo. 2011. Fast and Accurate Computation of

Equi-depth Histograms over Data Streams. In Proceedings of the 14th International
Conference on Extending Database Technology (EDBT/ICDT ’11). ACM, New York,

NY, USA, 69–80. https://doi.org/10.1145/1951365.1951376

[27] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.

https://doi.org/10.1007/s002360050048

[28] Oracle. [n. d.]. MySQL. https://github.com/mysql/mysql-server. ([n. d.]). [Online;

accessed 25-Mar-2019].

[29] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David

Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,

Guy M. Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer,

David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with

BLU Acceleration: So Much More Than Just a Column Store. Proc. VLDB Endow.
6, 11 (Aug. 2013), 1080–1091. https://doi.org/10.14778/2536222.2536233

[30] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, Dominique Barth, and Sandrine

Vial. 2011. Indexing In-network Trajectory Flows. The VLDB Journal 20, 5 (Oct.
2011), 643–669. https://doi.org/10.1007/s00778-011-0236-8

11

https://doi.org/10.1016/0020-0190(94)00176-Y
https://github.com/google/leveldb
https://doi.org/10.1145/2882903.2915231
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://www.usenix.org/conference/atc17/technical-sessions/presentation/balmau
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.14778/3229863.3229873
https://doi.org/10.1109/HPCA.2011.5749735
https://www.columnardatabase.com/
https://sqlite.org/src4/doc/trunk/www/index.wiki
https://sqlite.org/src4/doc/trunk/www/index.wiki
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1109/ICDE.2000.839394
https://doi.org/10.1109/ICDE.2000.839394
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/581751.581753
https://github.com/google/leveldb
http://dl.acm.org/citation.cfm?id=1315451.1315455
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/1920841.1920990
https://doi.org/10.1145/1951365.1951376
https://doi.org/10.1007/s002360050048
https://github.com/mysql/mysql-server
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1007/s00778-011-0236-8

SSDBM 2021, July 6-7, 2021, Tampa, Florida, USA D.H. Ton That, et al.

[31] Todd W. Schneider. 2016. Unified New York City Taxi and Uber data. https:

//github.com/toddwschneider/nyc-taxi-data. (2016). [Online; accessed 18-Aug-

2017].

[32] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A General Purpose Log

Structured Merge Tree. In SIGMOD ’12. ACM, New York, NY, USA, 217–228.

https://doi.org/10.1145/2213836.2213862

[33] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,

Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat

O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: A Column-oriented

DBMS. In VLDB’05. 12.
[34] Dai Hai Ton-That, Iulian Sandu-Popa, and Karine Zeitouni. 2015. TRIFL: A

Generic Trajectory Index for Flash Storage. ACM Trans. Spatial Algorithms Syst.
1, 2, Article 6 (July 2015), 44 pages. https://doi.org/10.1145/2786758

[35] Dai Hai Ton That, James Wagner, Alexander Rasin, and Tanu Malik. 2018. PLI
+
:

Efficient Clustering of Cloud Databases. Distributed and Parallel Databases (2018).
in the third round of DAPD.

[36] Wikipedia. 2019. Business Intelligence. https://en.wikipedia.org/wiki/Business_

intelligence. (2019). [Online; accessed 25-June-2019].

[37] Marcin Zukowski and Peter A. Boncz. 2012. Vectorwise: Beyond Column Stores.

IEEE Data Eng. Bull. 35 (2012), 21–27.

8 APPENDIX
8.1 Example: Tiered LSM-Tree
The Figure 13 shows the Tiered LSM-Tree behavior during the data

ingestion (Sample data D - Figure 1). As shown, there are only two

merges at the steps 2 and 4.

Figure 13: Data loading with tired and tiered LSM-Trees.

8.2 LSM-Tree merge costs
The the number of I/Os (write and read) of Tiered-LSM and Leveled-

LSM are presented in Formulas (10 and 12) and (11 and 13).

nRw =
L−1∑
i=1

(⌊
M

T i−1

⌋
−

⌊
M

T i

⌋)
BT i−1

P
(10)

Proof. Formula 10 can be proved as follows. The Tier-LSM has L

levels (i .e ., [0;L−1]). Since Level 0 is the head of LSM resided main-

memory we only consider levels in [1;L − 1]. GivenM = ⌊N /B⌋, at
level L = 1, we haveM times level L = 0 get full and flush a run to

level L = 1. Among theseM times, there are ⌊MT ⌋ times level L = 1

get full and all data will be written to level L = 2 instead of level

L = 1. In level L = 1, run = B. Therefore, we have: run∗(M−⌊MT ⌋) =
B
P ∗ (M − ⌊MT ⌋) write IO. At level L = 2: we have ⌊MT ⌋ times level

L = 1 get full and flush a run to level L = 2. Among these ⌊MT ⌋

times, there are ⌊ MT 2
⌋ times level L = 2 get full and all data will be

written to level L = 3 instead of level L = 2. In level L = 2, run = BT .

Therefore, we have: run∗(⌊MT ⌋ − ⌊ MT 2
⌋) = BT

P ∗(⌊MT ⌋ − ⌊ MT 2
⌋)write

IO. At Level L = i (1 ≤ i ≤ L−1): we have ⌊ M
T i−1 ⌋ times level L = i−1

get full and flush a run to level L = i . Among these ⌊ M
T i−1 ⌋ times,

there are ⌊ MT i ⌋ times level L = i get full and all data will be written

to level L = i + 1 instead of level L = i . In level L = i , run = BT i−1.

Therefore, we have: run∗(⌊ M
T i−1 ⌋− ⌊ MT i ⌋) =

BT i−1

P ∗(⌊ M
T i−1 ⌋− ⌊ MT i ⌋)

write IO. Therefore the total number of writes:

nRw =
∑L−1
i=1 (⌊ M

T i−1 ⌋ − ⌊ MT i ⌋) ∗
BT i−1

P .

□

nVw =
L−1∑
i=1

[⌊
M

T i

⌋
(T − 1)T iB

2P
+

(⌊
M

T i−1

⌋
%T

) (⌊
M

T i−1

⌋
%T + 1

)
T i−1B

2P

]
(11)

Proof. Formula 11 can be proved as follows. The Leveled-LSM

has L levels (i .e ., [0;L− 1]). Since Level 0 is the head of LSM resided

main-memory we only consider levels in [1;L − 1]. Given M =

⌊N /B⌋, at level L = 1, we have A1 = ⌊MT ⌋ times level L = 1 get

full and B1 = M%T runs are still remaining in level L = 1. Before

each time level L = 1 get full, it needs to receivedT runs from level

L = 0. Each time level L = 1 receives a run from level L = 0, it reads

exiting data and re-write everything again to this level except when

it’s full. This means before each time L = 1, get full. It needs to

write
run
P ∗[(1+2+ ...+ (T −1)]. Meanwhile, in level L = 1, run = B.

The number of writes in A1 is ⌊
M
T ⌋ ∗ B

P ∗
∑T−1
t=1 t = ⌊MT ⌋ ∗

B(T−1)T
2P .

Similarly, the cost of writingB1 runs in levelL = 1 is
run
P ∗[1+2+...+

B1] =
B
P ∗[1+2+...+M%T] = B

P ∗
M%T ∗(M%T+1)

2
. Therefore, the total

number of writes in level L = 1: ⌊MT ⌋ ∗
B(T−1)T

2P +
M%T ∗(M%T+1)B

2P .

At Level L = 2: Similarly, we have A2 = ⌊ MT 2
⌋ times level L = 2

get full and B2 = ⌊MT ⌋%T runs are still remaining in level L = 2.

In level L = 2, run = B ∗T . So the total number of writes in level

L = 2: ⌊ MT 2
⌋ ∗

B(T−1)T 2

2P + ⌊MT ⌋%T ∗ (⌊MT ⌋%T + 1)BT
2P . At Level L = i

(1 ≤ i ≤ L − 1): We also have Ai = ⌊ MT i ⌋ times level L = i get full

and Bi = ⌊ M
T i−1 ⌋%T runs are still remaining in level L = i . In level

L = i , run = B ∗T i−1. So the total number of writes in level L = i:

⌊ MT i ⌋ ∗
B(T−1)T i

2P + ⌊ M
T i−1 ⌋%T ∗ (⌊ M

T i−1 ⌋%T + 1)
BT i−1

2P
Therefore the total number of writes:

nVw =
∑L−1
i=1 ⌊ MT i ⌋ ∗

B(T−1)T i

2P + ⌊ M
T i−1 ⌋%T ∗ (⌊ M

T i−1 ⌋%T + 1)
BT i−1

2P .

□

nRr =
L−1∑
i=1

[⌊
M

T i

⌋
(T − 1)B

P

]
=mT

[
(T − 1)B

P

]
(12)

nVr =
L−1∑
i=1

[⌊
M

Ti

⌋
(T − 1)T iB

2P
+

(⌊
M

T i−1

⌋
%T

) (⌊
M

T i−1

⌋
%T − 1

)
T i−1B

2P

]
(13)

Similar methods can be applied to have the total number of

IOs (read) for Tiered-LSM and Leveled-LSM shown in Formulas 12

and 13.

12

https://github.com/toddwschneider/nyc-taxi-data
https://github.com/toddwschneider/nyc-taxi-data
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/2786758
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Business_intelligence

	Abstract
	1 Introduction
	2 An Example: LSM Vs LDI
	2.1 An Experiment: LSM Vs LDI in Column Databases

	3 Learned Distribution Index
	3.1 Initializing a distribution
	3.2 Updating a distribution
	3.3 LDI Maintenance

	4 LDI Architecture
	4.1 Bucket indexing for Query Performance
	4.2 I/O handler

	5 Evaluation
	5.1 Loading Costs
	5.2 Read Query Performance
	5.3 Effectiveness of concurrence and parallel processing

	6 Related Work
	6.1 Columnar Stores
	6.2 Log Structured Merge Trees
	6.3 Data distribution

	7 Conclusion
	References
	8 Appendix
	8.1 Example: Tiered LSM-Tree
	8.2 LSM-Tree merge costs

