
Programmable Access to Relational Database Storage
James Wagner

DePaul University
Alexander Rasin

DePaul University
Dai Hai Ton That

DePaul University

Tanu Malik

DePaul University
Jonathan Grier

Grier Forensics

ABSTRACT

Applications in several areas, such as privacy, security,
and integrity validation, require direct access to database
management system (DBMS) storage. However, relational
DBMSes are designed for physical data independence, and
thus limit internal storage exposure. Consequently, appli-
cations either cannot be enabled or access storage with
ad-hoc solutions, such as querying the ROWID (thereby
exposing physical record location within DBMS storage
but not OS storage) or using DBMS “page repair” tools
that read and write DBMS data pages directly. Ad-hoc
methods are di�cult to program, maintain, and port across
various DBMSes.

In this paper, we present a specification of programmable
access to relational database storage. Open Database Stor-
age Access (ODSA) is a simple, DBMS-agnostic, easy-to-
program storage interface for DBMSes. We formulate novel
operations using ODSA, such as comparing page-level meta-
data. We present three compelling use cases that are en-
abled by ODSA and show examples of how to use ODSA.

1 INTRODUCTION

Relational DBMSes adhere to the principle of physical data
independence: DBMSes expose a logical schema of the data
while hiding its physical representation. A logical schema of
the DBMS consists only of a set of relations (i.e., the data).
A physical view of the DBMS, however, consists of several
objects, such as pages, records, directory headers, etc. Hid-
ing physical representation is fundamental to the design of
relational DBMSes: DBMSes transparently control physi-
cal data layout and manage auxiliary objects in order to
provide e�cient query execution. This data independence,
however, inhibits several security and performance related
applications requiring low-level storage access. We provide
a small example here, giving more detailed use cases of
application in Section 2.

Consider, for example, a bank or a hospital that handles
sensitive customer data using a commercial database but
for audit purposes must sanitize deleted customer data to
ensure that it cannot be recovered and stolen. Very few
DBMSes o�er support for explicit sanitization of deleted
data (e.g., secure delete in SQLite exists but provides no
guarantees or feedback to the user)1. In order to program-
matically verify that deleted data cannot be reconstructed,
a DBA must inspect all storage ever used by a DBMS
1DBMS encryption is similar in not providing any feedback. Fur-
thermore, encrypted values should still be destroyed on deletion.

© 2020 Copyright held by the owner/author(s). Published in Proceed-
ings of the 22nd International Conference on Extending Database
Technology (EDBT), March 30-April 2, 2020, ISBN XXX-X-XXXXX-
XXX-X on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

where such data may reside. This includes DBMS auxiliary
objects such as indexes, unallocated fragments in DBMS
storage, as well as any DBMS storage released to the OS.

Enabling comprehensive storage-level access is an inher-
ent DBMS challenge because of the way DBMSes control
storage. DBMSes control allocated storage objects such as
a) physical byte representation of the relations, b) metadata
that annotates physical storage of relation data, c) auxiliary
objects associated with relations (e.g., indexes, materialized
views). The user can manipulate allocated objects exposed
by SQL. However, as illustrated in the example, the DBA
often also needs access to unallocated storage objects not
tracked by a DBMS such as deleted data that lingers in
DBMS-controlled files, and DBMS-formatted pages that
are released back to the OS and no longer under DBMS
control (e.g., files deleted by the DBMS, OS paging files).
These objects are certainly part of the physical view and
required for any storage access, but currently not exposed
by any DBMS. Vendors such as Oracle incorporate the
DBMS_REPAIR package [3], enabling users to manually fix or
skip corrupt blocks in Oracle storage. This access, however,
is not inclusive of all storage.

ODSA

Physical Data
Independence

DBMS Files

Schema

Disk Storage

Open Storage
Access

RAM
DBMS
Buffer

Logical Level

Application Level

Unallocated
Disk Sectors

System Files
(e.g., paging)

Figure 1: ODSA storage access.

In order to enable such security and performance appli-
cations, we present Open Data Storage Access (ODSA),
an API that provides comprehensive access to all DBMS
metadata and data in both (unallocated and allocated)
persistent and volatile storage. ODSA does not instrument
any RDBMS software; it interprets underlying data using
database carving methods [7]. We use carving as method
to expose physical level details. But carving itself is not
su�cient. Carved data consists of disk-level physical de-
tails making it di�cult to program database storage. ODSA
abstracts low-level disk-level details with a hierarchical
view of database storage that most DBAs are familiar with.
In particular it organizes them into pages, records, and
values and internally resolves them to physical addresses.
ODSA also guarantees that the same hierarchy can be used
against multiple DBMS storage engines, so as to ensure
portability of programmed applications. Figure 1 shows
the storage access enabled by ODSA.

The rest of the paper is organized as follows. Section 2
presents three representative uses cases that require storage-
level access. Section 3 provides an overview of how appli-
cations previously had limited access to internal DBMS
storage. Section 4 describes the hierarchy exposed by our
API, ODSA, and how it includes both allocated and unallo-
cated storage. Section 5 demonstrates how to implement
and use the ODSA. Finally, Section 6 discusses future work
related to ODSA.

2 USE CASES

This section presents three representative use cases that
require direct access to di�erent abstractions of storage.

2.1 Intrusion Detection

A bank is investigating mysterious changes to customer in-
formation. Unbeknownst to the bank, a disgruntled system
administrator modified the DBMS data file bytes at the
file system level. This activity bypassed all DBMS access
control and logging, and still e�ectively altered account bal-
ances. The system administrator also turned o� file system
journaling with tune2fs to further hide their activity. The
bank is not able to determine the cause for inconsistencies
with the log files alone. Forensic analysis [8] that detect
such malicious activity require per page storage access in
order to compare volatile storage with persistent allocated
and unallocated storage.

2.2 Performance Reproducibility

Alice, an author, wants to share her computation and
data based experiments with Bob so he can repeat and
verify Alice’s work. Out of privacy and access constraints,
Alice must build a container consisting of necessary and
su�cient data for Bob to reproduce. If the shared data
is much smaller than original database file, Bob will not
be able to reproduce any performance-based experiment
as the data layout of the smaller data will significantly
di�er from the original layout. To achieve a consistent ratio
between Alice’s experiment run and Bob’s verification run,
data layout specification at the record and page level must
itself be ported. Currently, data layouts as part of a shared
database file in a container cannot be communicated [4].

2.3 Evaluating Data Retention

Following on the example in Section 1, consider a bank
which must validate their compliance with data sanitization
regulations (e.g,. EU General Data Protection Regulation
or GDPR [5]). To comply the bank, after deleting data,
must independently validate that data is indeed deleted.
There are no validation guidelines for DBMS beyond a
complete overwrite of the entire file [2]. This is considered
too coarse a guideline, especially for DBMS files, which
may have only deleted a few rows.

Alternatively, consider if the compliance o�cer has pro-
grammatic access to database storage via ODSA for valida-
tion. The o�cer can easily access all unallocated storage,
determine its location (e.g., the database file or an OS
paging file) and then verify if unallocated values cannot be
found in OS or memory or any auxiliary structures (e.g.,
materialized views or B-Tree index).

3 RELATED WORK

We describe built-in tools and interfaces available as part
of popular RDBMSes, which provide physical storage infor-
mation at di�erent granularities, but none provides a com-
prehensive view of storage. The ROWID pseudo-column
represents the physical location of a record within DBMS
storage (not disk), and is one of the simplest examples of
storage-based metadata users can access through almost
all RDBMSes. Most commercial DBMSes o�er utilities to
inspect and fix page level corruption. Examples include
Oracle’s DBMS_REPAIR, Oracle’s BBED (page editing tool
available from Oracle 7 to Oracle 10g), and SQL Server’s
DBCC CHECKDB. However, even for accessible metadata such
as ROWID, built-in tools do not help interpret its meaning;
a DBA would have to manually make such interpreta-
tions. Moreover, no RDBMS o�ers access to unallocated
storage. Finally, existing tools only support analysis of
persistent storage. ODSA is designed to o�er a universal
meaning of DBMS storage (including IBM DB2, Microsoft
SQL Server, Oracle, MySQL, PostgreSQL, SQLite, Fire-
bird, and Apache Derby) with support for both persistent
and volatile storage.

A comprehensive way to acquire detailed DBMS storage
information is carving at byte level. Carving retrieves both
allocated and unallocated storage, as we have previously
shown with DBCarver [7]. However, carving is post hoc in
that access to full physical DBMS storage is only available
after interpreting storage. In this paper, we use DBCarver
to demonstrate the types of physical information that an
RDBMS can provide.

Raw
Storage

Raw Storage Abstraction

DBCarver

ODSA

Applications
(Section 2)

Metadata &
Data Collection

(Section 3)

API
(Sections 4-6)

Native
Tools

RAM
Images

Disk
Images

Other
Applications

Analyze Data
Retention

Reproducibility

Intrusion
DetectionDBMS

Files

Other
Carvers

Figure 2: ODSA completes raw database storage abstraction

in an end-to-end process for storage access.

4 OPEN DATABASE STORAGE ACCESS

As shown in Figure 2, ODSA relies on carving to obtain
access to raw storage. ODSA abstracts two specific details
from the raw storage.

First, it interprets each sequence of raw bytes and clas-
sifies it into one of physical storage element, viz. Root,
DBMS Object, Page, Record, or Value. Thus, given a col-
lection of interpreted raw storage elements, ODSA provides
a hierarchical access to these elements by linking them.
We provide a brief description of the hierarchy. The root
level represents the entry point from all other data to be
reached. DBMSes manage their own storage, and a disk
partition consisting of both Oracle and PostgreSQL pages,
will result in two DBMS roots. The DBMS object level
calls return metadata, data, and statistics that describe
a DBMS object, such as a list of pages or column data

#4.A. Root

class Root:
def __init__ (self , db_file):

Initialize

def get_object_ids (self):
Return a list of object ids

Calls to Other Instance and Namespace Data

#4.B. Object

class DBMS_Object (Root):
def __init__ (self , parent , object_id):

Initialize

def get_page_offsets (self):
Return a list of page offsets

def get_object_type (self):
Return the object type string

def get_object_schema (self):
Return a list of column datatypes

#4.C. Page

class Page(Object):
def __init__ (self , parent , page_offset):

Initialize

def get_record_offsets (self):
Return a list of record offsets

def get_page_id (self):
Return a string for page id

def get_page_type (self):
Return a string for page node type

def get_checksum (self):
Return a string for the checksum

def get_row_directory (self):
Return a list of row pointers

#4.D. Record

class Record (Page):
def __init__ (self , parent , record_offset):

Initialize

def get_value_offsets (self):
Return a list of value positions

def get_record_allocation (self):
Return Boolean allocation status

def get_record_row_id (self):
Return a string for the row id

def get_record_pointer (self):
Return a string for row pointer

#4.E. Value

class Value (Record):
def __init__ (self , parent , value_offset):

Initialize

def get_value (self):
Return string for a data value

Figure 3: A sample set of ODSA calls.

types. Pages are uniquely identified by their byte o�set
in raw storage, rather than the PAGEID. We also do not
rely on the row directory pointer within the page because
record deletion may be performed by writing NULL in the
row directory entry or the page itself may be NULLed.

Second, in providing hierarchical access to each physical
element, ODSA hides DBMS heterogeneity by identifying
pages and records within storage through physical byte
o�sets instead of DBMS-specific pointers. Computing the
value of a DBMS pointer varies between di�erent vendors.
For example: Oracle incorporates FileID into index pointer
while PostgreSQL does not; index pointer structure in
MySQL di�ers from both Oracle and PostgreSQL because
MySQL relies on index organized tables. Even if all vendors
encoded the pointer similarly, abstraction is needed in
terms of pages since duplicate pages may exist in the
storage medium (outside of DBMS-controlled storage, such
as paging files). Given PageA and its physical copy PageÕ

A,
ODSA enables application developers to connect an index
pointer referencing PageA and the contents of PageÕ

A.

ROOT

DB_File DBMS PageSize PageCnt DiskImage

OBJECT

DB_File ObjectID Type PageCnt Schema

PAGE

PageO�set DB_File ObjectID PageID

ROW_DIRECTORY

DB_File PageO�set Pointer

RECORD

DB_File PgO�set RecO�set RowID Allocated

VALUE

DB_File PgO�set RecO�set ValueO�set Value

Figure 4: The relational schema used to store ODSA data.

Implementation. There are multiple ways to implement
the hierarchy. We have currently implemented the ODSA
hierarchy as a pure object hierarchy (Figure 3) and as a
relational schema (Figure 4). The pure object hierarchy
is stored as a JSON file in the DB3F format [9]. The
relational schema is a starting representation – it supports
basic applications and is normalized to 3NF requirements.
A relational schema is realized since application developers
may prefer to access a DBMS storage with SQL rather than
calling the ODSA directly. However, as we show in Section 5
the SQL implementation requires several joins and is quite
counter-intuitive, despite it being DBMS physical storage.

5 USING ODSA

For use cases in Section 2, two fundamental physical storage
access operations are to find unallocated records and to
match index pointers to records in DBMS. We use ODSA
calls to enable these operations and show how to achieve
these operations in Python and SQL, respectively. The
two implementations are shown to contrast programmatic
verbosity and maintainability. We focus on ODSA access and
do not consider implementation performance.

Example1: Find Unallocated Records. Use cases 2.1 and
2.3 require a DBA to search and retrieve unallocated
records. To retrieve unallocated records, the user must
know the name of the carved database file and the name
of the table (the Customer table in this example) from
which unallocated records are being sought. Figure 5 finds
and prints all unallocated (e.g., deleted) records from the
Customer table. All ODSA calls are highlighted.

The implementation in Figure 5 uses three ODSA calls to
search for unallocated records: Line 3 retrieves page o�-
sets, which uniquely identify pages. The code then iterates
through the pages in Line 5, loads each page in Line 6, and
retrieves the record o�sets for that page in Line 7. Finally,
the code iterates through records using their identifying o�-
sets within a page. The record allocation status is retrieved
in Line 11 to identify and print unallocated records.

1 DBRoot = odsa.Root(’MyDatabase1.json’)
2 CustomerTable = odsa.Object(DBRoot, ’Customer’)
3 PageOffsets = CustomerTable.get_page_offsets()
4

5 for PageOffset in PageOffsets :
6 CurrPage = odsa.Page(Table, PageOffset)
7 RecordOffsets = CurrPage.get_record_offsets()
8

9 for RecOffset in RecordOffsets :
10 CurrRecord = odsa.Record(CurrPage, RecOffset)
11 allocated = CurrRecord.get_record_allocation()
12 # print unallocated (e.g., deleted) record

13 if not allocated :
14 print CurrRecord

Figure 5: Using ODSA to find deleted records.

The same search and retrieval requires an 8-way join in
SQL due to joining the hierarchy between Object, Page,
Record, and Value tables:

SELECT PageOffset, RecordOffset, ValueOffset, Value
FROM Object, Page, Record, Value
AND Object.DB_File = Page.DB_File
AND Object.ObjectID = Page.ObjectID
AND Page.DB_File = Record.DB_File
AND Page.PageOffset = Record.PageOffset
AND Record.DB_File = Value.DB_File
AND Record.PageOffset = Value.PageOffset
AND Record.RecordOffset = Value.RecordOffset
AND Object.DB_File = �MyDatabase1.json�
AND Object.ObjectID = �Customer�
AND Record.Allocated = FALSE;

Example2: Matching a Record to Index Pointers. To
match a record to a database object such as an index, the
user must provide as input specific instances of the record
and index objects. The code in Figure 6 iterates through all
index pages (Line 2) and index records to determine if the
input record matches. Recall, in an index, records are value-
pointer pairs. So the code determines o�sets of all index
pages (Line 4), and for each index page (Line 5), determine
record o�sets (Line 6 and 7) to finally load the value-pointer
pair index record (Line 10), and its corresponding pointer
(Line 12). Finally, for any index pointer match to the record
pointer (Line 13), the index entry is printed.

In this example brute-force iteration over all index pages
is necessary, i.e. the program cannot break at the first
occurrence of a match in Line 13. This is necessary because
DBMS indexes often contain records of entries that have
been deleted or updated. For example, consider the record
(42, Jane, 555-1234) in the Customer table where name

column is indexed. In addition to the expected (Jane,

{PAGEID: 12, ROWID: 37}) entry in the index, the index
may also contain (Jehanne, {PAGEID: 12, ROWID: 37}) if
customer changed their name from Jehanne to Jane as well
as (Bob, {PAGEID: 12, ROWID: 37}) if another customer
named Bob had previously deleted their account freeing
up the space for Jane’s record in the same location.

As demonstrated in Figure 6, the Python-specific imple-
mentation retrieves all records. On the contrary, matching a
record to an index in SQL requires a dynamic SQL (shown
below) in which after the customary 8-way join to find
record values, parameters of each record value must be
supplied to exactly match the values. Moreover, this query
assumes that that there is only one indexed column which
is transparently accounted for in the abstraction of the

1 def findIndexEntries (record , Index):
2 RecordPtr = record.get_record_pointer()
3 IndPageOffsets = Index.get_page_offsets()
4

5 for IndPageOffset in IndPageOffsets :
6 IndPage = odsa.Page(Table, IndPageOffset)
7 IndROffsets = IndPage.get_record_offsets()
8

9 for IndROffset in IndROffsets :
10 IndEntry = odsa.Record(IndPage, IndROffset)
11 # IndEntry is a pair (Value , Pointer)

12 IndexPointer = odsa.Value(IndEntry, 1)
13 if IndexPointer == RecordPtr :
14 print IndEntry

Figure 6: Using ODSA to find all index entries for one record

DBMS Object class.
SELECT V1.Value FROM Page, Record, Value V1, Value V2
WHERE Page.DB_File = Record.DB_File
AND Page.PageOffset = Record.PageOffset
AND Record.DB_File = V1.DB_File
AND Record.PageOffset = V1.PageOffset
AND Record.RecordOffset = V1.RecordOffset
AND Record.DB_File = V2.DB_File
AND Record.PageOffset = V2.PageOffset
AND Record.RecordOffset = V2.RecordOffset
AND Page.ObjectID = ? --Index name placeholder

AND V1.ValueOffset = 0 --Indexed value is at offset 0

AND V2.ValueOffset = 1 --Pointer is at offset 1

AND V2.Value = (SELECT Record.Pointer FROM Record
WHERE (DB_File, PageOffset, RecordOffset) =

(?, ?, ?) /*Record ID placeholders*/);

6 CONCLUSION

ODSA was designed based on the principles and challenges
described in [1, 6]. In particular, it was designed to be
simple and easy-to-use by integrating the terminology used
across DBMS documentation. Classes were named based
on general concepts giving them an intuitive meaning while
abstracting DBMS-specific implementation details. ODSA
adheres to single-responsibility principle in that calls focus
on single pieces of data and metadata. ODSA supports both
3rd party carving and built-in DBMS mechanisms should
vendors choose to expose storage. As a result, ODSA comple-
ments physical data independence and enables simple yet
powerful implementations of a variety of applications that
require access to storage. Additional requirements such as
versioning and backward compatibility are future work.

REFERENCES

[1] Joshua Bloch. 2006. How to design a good API and why it
matters. In OOPSLA.

[2] Intl. Data Sanitization Consortium. 2019. Data Sanitization
Terminology. https://www.datasanitization.org/.

[3] Oracle. 2019. Using DBMS_REPAIR. https://docs.oracle.com/
cd/B19306_01/server.102/b14231/repair.htm.

[4] Quan Pham et al. 2015. LDV: Light-weight database virtualiza-
tion. In ICDE.

[5] General Data Protection Regulation. 2016. Regulation (EU)
2016/679. O�cial Journal of the European Union (OJ) 59,
1-88 (2016), 294.

[6] Martin P Robillard. 2009. What makes APIs hard to learn?
Answers from developers. IEEE software (2009).

[7] James Wagner et al. 2017. Database Forensic Analysis with
DBCarver. In CIDR.

[8] James Wagner et al. 2018. Detecting Database File Tampering
through Page Carving. In EDBT.

[9] James Wagner et al. 2019. DB3F & DFToolkit: The Database
Forensic File Format and Database Forensic Toolkit. In DFRWS.

