
Distributed and Parallel Databases
https://doi.org/10.1007/s10619-018-7252-2

PLI+: Efficient Clustering of Cloud Databases

Dai Hai Ton That · James Wagner ·
Alexander Rasin · Tanu Malik

Received: January 15, 2018 / Accepted: September 25, 2018

Abstract Commercial cloud database services increase availability of data
and provide reliable access to data. Routine database maintenance tasks such
as clustering, however, increase the costs of hosting data on commercial cloud
instances. Clustering causes an I/O burst; clustering in one-shot depletes I/O
credit accumulated by an instance and increases the cost of hosting data. An
unclustered database decreases query performance by scanning large amounts
of data, gradually depleting I/O credits.

In this paper, we introduce Physical Location Index Plus (PLI+), an in-
dexing method for databases hosted on commercial cloud. PLI+ relies on
internal knowledge of data layout; it builds a physical location index, which
maps a range of physical co-locations with a range of attribute values to create
approximately sorted buckets. As new data is inserted, writes are partitioned
in memory based on incoming data distribution. The data is written to phys-
ical locations on disk in block-based partitions to favor large granularity I/O.
Incoming SQL queries on indexed attribute values are rewritten in terms of
the physical location ranges. As a result, PLI+ does not decrease query per-
formance on an unclustered cloud database instance; DBAs may choose to
cluster the instance when they have sufficiently large I/O credit available for
clustering thus delaying the need for clustering. We evaluate query perfor-
mance over PLI+ by comparing it with clustered, unclustered (secondary)
indexes, and log-structured merge trees on real datasets. Experiments show
that PLI+ significantly delays clustering, and yet does not degrade query
performance – thus achieving higher level of sortedness than unclustered in-
dexes and log-structured merge trees. We also evaluate the quality of clustering
by introducing a measure of interval sortedness, and the size of index.
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1 Introduction

Database management systems (DBMS) offer users a secure and a reliable
solution to store and share data. There is an increased interest in hosting data
within the cloud. Cloud-based DBMSes1 provide a cost effective solution by
allocating processing and storage resources on demand and deallocating these
resources when they are not needed. This is particularly evident for scientific
databases, such as Plenar.io [8], the 1000 Genomes Project [9], GenBank [7],
and the NASA NEX [18]. Scientific databases such as these sporadically ingest
high volumes of data, and require high availability and support for multi-user
access. For example, if a scientific database stores information about road
traffic, it is reasonable to expect that a high volume of data will be collected
around rush hour and a low volume of data will be collected at midnight.
Therefore, there are times when the DBMS requires increased resources to
load and manage data, but there are also periods of time when these resources
are unnecessary.

Even though cloud-based DBMSes offer a cost-effective scaling solution for
such databases, the cost of these services can still be prohibitive due to main-
tenance demands. The majority of cloud-based DBMS vendors charge users
based on the number of I/O operations performed, in addition to the storage
and processing costs. Therefore, it is important for a cloud-based DBMS to
efficiently manage storage to reduce I/O operations.

Clustering is a common and well-known technique used in DBMSes to phys-
ically sort data in persistent storage. When a table is clustered (or sorted),
records are read with minimal I/O operations. Therefore, it is reasonable to
claim that clustering will reduce costs for a cloud-based DBMS. Section 2 pro-
vides an overview of the different clustering methods supported by DBMSes.

While clustering results in optimal I/O costs for the read-only queries,
there remains a steep trade-off in the number of I/O operations needed to
maintain a clustered table. Most relational databases implement clustering
as an external merge sort operation, which has a worst-case disk I/O cost of
2∗N ∗ [dlogB−1dNB ee+1] for a table of size N blocks [22]. Thus every clustering
maintenance operation is I/O and memory-intensive, causing at least double
the number of I/Os based on the size of the database and available memory,
and often much higher due to temporary indexes created during clustering. In
a non-cloud DBMS, this entire operation is assumed to be free of monetary
cost. When databases are hosted on the cloud, clustering generates an I/O
burst, depleting available I/O credits of the cloud instance. If tables are to
be clustered frequently, which is inevitable when new datasets are inserted,
instances must be either over-provisioned in capacity adding to hosting costs or
the application throughput must be capped when credits deplete. For example,
the costs can be as high as $1000 per month for modest size databases (100
- 500GB). For funds and resource-crunched data-intensive science projects,

1 A DBMS deployed on a cloud platform
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these costs can soon add up to be significant. Section 3 demonstrates the high
monetary costs needed to implement clustering on a cloud-based DBMS.

Example 1 A federal law enforcement agency wants to study trends in crime
around the nation. The Plenar.io [8] dataset, which is stored on a cloud-based
DBMS, serves as a valuable resource since it stores crime statistics for cities
around the world. The federal agents primarily access this crime data based
on the geographical attributes. Therefore, it would be reasonable to cluster (or
sort) the crime data based on the geographical attributes to reduce the I/O for
the queries issued by the federal agents. Assuming that crimes continuously
happen around the country (or city), data would be ingested based on the
order in which the events occur. To support efficient query responses for the
federal agents, the DBMS must cluster (or re-sort) the table as it is ingested.
While the I/O remains low for the read queries issued by federal agent, the
DBMS requires a high number of I/O operations to re-order the data based
on the geographical attributes. This high number of I/O operations increases
the monetary costs to host the DBMS on a cloud service.

Our previous work [30] sought to address the problem demonstrated in
Example 1 with an index structure called a physical location index (PLI).
PLI allowed for a delayed sorting approach in that as data was ingested, it
would be appended to a table by an insertion order. PLI maintains a mapping
between approximate physical locations and the values ingested. This approach
does not experience any costs to organize the data. So for example, if it takes
100 seconds to scan a table and a query accessed 5% of the table based on the
sorted attribute, then a PLI could provide a query runtime of approximately 5
seconds. If the table size grew by 10%, then the query that accessed 5% of the
table based on the sorted attribute would now take approximately 15 seconds.
However, the read query response time can quickly decay as large amounts
of data is continuously ingested, such as in Plenar.io. Section 4 explains how
PLI is deployed and used.

In this paper, we expand upon our previous work from [30] by proposing
a solution called PLI+. PLI+ builds upon PLI in the following ways: 1) it
achieves the optimal read query runtimes and I/O provided by a PLI and
native clustering in spite of large number of inserts, and 2) it supports a
delayed clustering approach that does not require excessive I/O, yet does not
experience the query degradation observed for a PLI. We discuss our proposed
solution, PLI+, in Sect. 5. We thoroughly evaluate PLI+ in Sect. 6. Our
contributions are as follows:

– We analyze the costs associated with implementing clustering for a cloud-
based DBMS. This demonstrates that clustering produces unexpected mon-
etary costs due to high number of I/O operations. (Sect. 3)

– We describe our previous work on PLI including its advantages and short-
comings. PLI offers competitive runtimes for read queries, and delays clus-
tering maintenance approach. (Sect. 4)

– We describe our proposed solution, PLI+, which builds upon PLI. PLI+

also takes a delayed clustering approach, but it additionally buffers incom-
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Fig. 1: Storage layout of native database clustered index based on an IOT.

ing data and performs in memory sorting, which avoids the query degra-
dation of PLI. (Sect. 5)

– We provide a detailed and sound experimental analysis of PLI+ including
a thorough comparison with Log-structured Merge (LSM) trees, secondary,
and clustered indexes. (Sect. 6)

2 Related Work

In this section, we review clustering-based methods as provided by cloud
database services, and as described in current research.

2.1 Database systems on the cloud

Clustering in a cloud database engines depends upon the type of provisioned
databases instances. We classify them as B-Tree and non-B-Tree based sys-
tems.

B-tree-based database systems (e.g., Postgres, DB2) store related items
logically adjacent in the B-tree, but B-tree structure does not guarantee that
logically-adjacent items will be physically adjacent. As a B-tree ages, leaves
become scattered across the disk due to node splits from insertions and node
merges from deletions. In an aged B-tree, there is little correlation between
the logical and physical order of the leaves, and the cost of reading a new
leaf involves both the data-transfer cost and the seek cost. The only way to
improve the correlation is by manually clustering the database.

Several DBMSes (e.g., Oracle and MySQL) implement Index Organized Ta-
bles (IOT) [20], an augmented B-Tree structure that simultaneously serves as
a clustered table. Instead of maintaining two independent database structures,
a table and its index, IOT is a merged structure with rows of the table spliced
into the leaf nodes of the B-Tree index itself. When new rows are inserted,
IOTs maintain logical clustering as table data is stored along the leaves of
the IOT structure. However, this solution comes at the price of slower inserts
and a deteriorating read access performance. The leaves of the B-Tree data
structure form a logically sorted linked list (as shown in Figure 1), which is
not guaranteed to maintain a physical ordering as a clustered table does. For
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example, after a B-Tree node overflows, two split nodes may have to be writ-
ten in a different physical location on disk. Thus, IOTs incur the overheads of
other B-tree-based indexing systems, with the additional storage and access
overhead compared to a regular B-Tree, due to the additional row data incor-
porated into the leaf nodes. Additionally, an IOT can only be organized on
the primary key, while a PLI+index can be built on any column(s).

2.2 Clustering with Write-optimized Indexing

Write-optimized indexes, such as log-structured merge trees [19] and its vari-
ants [17, 26] maintain local clustering of blocks at multiple levels, each of
which is organized as a sorted sequential structure for the purpose of efficient
lookups. Incoming writes are first sorted in memory and when full, data is
merged into the first level on the disk. When the first level is full, its data
will be gradually merged to the second level, and so on. The entire clustering
process is a sequence of merges level by level. During a merge, only sequential
I/O operations are involved. However, since all levels are sorted separately, and
key spaces of different levels can overlap, LSM trees incur random I/O during
query time. Implementations of LSM-trees make point queries efficient by us-
ing Bloom-filters which help search for levels that contain the keys. However,
range queries remain slow since searches for each point need to be performed
in each level.

Since write-optimized indexing requires time to search, Bε-trees use ε amount
of space within internal for searching [13]. Here ε is a tunable parameter that
selects how much space internal nodes use for searching. Bε-trees experimen-
tally show better read/write performance than IOT structures. Unlike LSM
and Bε-trees, which strictly sort the data (with merge sort), in PLI+the goal
is to approximately sort the data. Thus, PLI+maintains physical locations
of blocks that contain the specific ranges of data (min and max in a block),
giving read queries an advantage by reducing the number of seeks needed for
range querying. However, this introduces additional overhead when new data
is inserted. We describe a main-memory sorting technique that determines the
physical location of where new data is inserted.

2.3 Clustering with Queries

There are several ways to reduce random I/O of the query workload. The
ferris-wheel approach [32, 33] queues queries if they access data out of index
order. Queries can also be used to determine the structure of an index. Gen-
eralized partial indexing builds unclustered indexes around records defined by
the user, leaving some records not indexed [27]. In contrast, PLI and PLI+

provide the benefit of indexing all records, and approximately sort the data
across buckets. In both methods, index maintenance cost is reduced by only
recording access or reorganizing data that benefits queries. Database crack-
ing [15] indexes by reorganizing individual columns (DB cracking is proposed



6 Dai Hai Ton That et al.

for column-stores); the column itself serves as an index, physically reorganized
to speed up query access. The reorganization happens dynamically as columns
are accessed by user queries. Similar to database cracking, PLI table data is
organized across but not within individual buckets. Kimura et al. proposed
dividing a table into buckets as a scan unit with a correlation map (CM)
index [16]. Representing a table as a sequence of buckets of rows allows for
a lightweight index structure which is easily cached, reducing costs of index
storage and maintenance. Similar to CMs, our method records the ranges of
values stored for each bucket and implements indexing with query rewrite. Un-
like CMs, our method relies only on internal row identifier for query rewrite –
while CMs require a built-in clustered index and the presence of correlation in
data (specifically, a correlation between the indexed column and the clustering
key is required).

2.4 Horizontal Partitioning

Horizontal partitioning (HP) methods [1, 2, 10] allow tables, indexes and
views to be partitioned into a disjoint sets of rows physically stored separately.
But PLI and PLI+ use buckets in which key-range values overlap. Horizontal
partitioning is also an offline processes that requires processing for changes to
workloads or incoming data [14]. The indexing methods proposed in this article
are online, light-weight indexes and can be created to satisfy a mixed point
and range query workload. Some DBMSes support both a clustered index and
a partitioned index. Similarly, a PLI (or PLI+) can be used in parallel with
a partitioned index.
3 Clustering on a cloud database instance

Fig. 2: The burst performance and baseline performance of different volume sizes on
RDS [5]. Maximum infinite IOPS is at 10K IOPS.

In this section, we analyze the monetary costs of clustering relational
database services (RDS) offered on the cloud. We use Amazon Web Services
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(AWS) as an example to illustrate the high cost of clustering on the cloud.
Other competing cloud database services (e.g., Microsoft Azure) use a similar
pricing structure. The cost of storing data on the cloud (not including the
cost of purchasing the Amazon EC2 instance) is twofold. First, there is a cost
to purchase the disk space on cloud platform (storage cost). Second, there is
a cost to access this data with high throughput (throughput cost). All cloud
services, including AWS, adopt a burst model for I/O throughput measured in
number of input and output operations per second (IOPS). Burst throughput
is maximum throughput, which is available for a fixed period of time. Even
though burst credit can be replenished after 24 hours, burst period is often
short and cloud instance reverts to a baseline throughput after the burst pe-
riod. Operating within the baseline throughput can dramatically degrade the
clustering process, leading to the DBMS remaining blocked for a long period.
Baseline throughput can be improved by extending the volume size (i.e., by
over-provision). Figure 2 shows the relationship between the baseline through-
put and burst throughput in terms of IOPS. The baseline throughput grows as
the volume size increases. It’s equal to burst throughput at 1TB and reaches a
maximum IOPS at about 3TB (i.e., 10K IOPS). The burst model follows the
pay-as-you-go model adopted for cloud services that charges for the amount
of I/O capacity used [3]. The model, however, greatly penalizes the access
pattern used by database maintenance tasks.

Fig. 3: Total number of I/Os of clustering on AWS with HDD and SSD storage (SSD based
on 16KB I/O size, HDD based on 1MB I/O size).

The I/O cost of clustering using external merge sort algorithm requires
M = 2 ∗ N ∗ [dlogB−1dNB ee + 1] I/O accesses, in which N is the number of
pages in a table, and B is the size of main memory buffer available for external
merge operation [22]. Figure 3 shows the cost of clustering for different table
sizes in term of number of I/Os on a logarithmic scale. The I/O size is 16KB on
SSD storage, and 1MB for HDD, resulting in different values of total numbers
of I/Os for SSDs and HDDs in Fig. 3. Also note that we chose log base-2 for
Y-axis as the best log scale to present results in most of our subsequent figures.
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If database applications are conservative and under-provision by choos-
ing an IOPS value based on database size, then the large number of I/O
required for the clustering process will quickly deplete the burst throughput.
The clustering after that is done at a baseline throughput, reducing query
performance and requiring much larger time to cluster. In Figure 4, the solid
line with squares shows the time different sized tables require to be clustered
at a baseline throughput after depleting burst I/O credits. If the application
over-provisions by using estimated high throughput I/O values, they must
over-provision significantly to get maximum throughput for a period of time
in which the entire clustering can finish. The solid line with triangles in Fig. 4
shows the time to cluster when the storage is over-provisioned. Alternatively,
if storage is under-provisioned, clustering can take days to finish during which
time query performance will be impacted. If the storage is over-provisioned to
maximum throughput, a 100GB applications may need to pay for extra stor-
age of about 3TB, while infinite IOPS are available at an extra cost of $350
each month or $4200 per year2. The results, reported for RDS operating on
solid-state disk drives, remain similar if EC2 instances are used or if hard disk
drives are used. In this paper, we show that PLI+can amortize the clustering
cost by initializing with a one time disk scan of the database and as little as
a 100MB memory buffer.

Fig. 4: Time to Cluster on AWS RDS with SSD storage.

4 PLI: A Physical Location Index for Delayed Clustering

We first describe the basic idea of PLI through an example, which we con-
tinue to refer to in the rest of this section. Consider Table T in Fig. 5 with
attributes {ID, Name}. Let T be physically clustered on attribute {ID} into
seven pages, i.e., the pages are in sequential order on the disk. The table
also records the physical location of each row which is marked with an inter-
nal {RowID} column. Clustering this column on {ID} will sort the attribute
{ID} and physically cluster the sorted result. Note that in order to minimize

2 We use the cost estimates from [4]; Each GB at this time costs about $0.125
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Fig. 5: Storage layout of native database indexes and PLI.

maintenance costs, the clustering on {ID} in Figure 5 example is not strict
but rather approximate. Consider a query that accesses values based on ID

BETWEEN #1 and #6. The secondary index will look up the matching keys,
reading a number of index pages (intermediate levels) and two pages from leaf
level of the index (incurring several seeks before accessing the table itself).
First three pointers (Row1, Row3, Row2) will access the first page, which will
be cached after the Row1 lookup. Fourth match (Row4) will require a seek
and a read of a seventh page at the end. Finally, fifth and sixth match will
correspond to pointers (Row5, Row6) causing yet another seek and reading of
the second page in the table. A more efficient access path would recognize that
five out of six matched values are in fact co-clustered in first two pages, with
one outlier (#4) that resides in the overflow page and avoid seeking back and
forth. While the above example assumes a separate B+-Tree over the table,
index-organized tables (IOTs) lead to a similar higher number of seeks for the
same query.

The only way to take advantage of this seek reduction is by determining
the level of physical co-clustering within attribute {ID}, information which
is maximally available through the RowID column of the table. Thus for in-
stance, if the database was indexed on RowID, with each range of RowID values
consisting of six table rows, then such an index will quickly determine the
physical co-clustering and lead to two seeks instead of three seeks. In gen-
eral, the performance difference can be much larger. The sparse index on the
right in Fig. 5 illustrates that fewer seeks are possible by knowing the state
of physical clustering. Using this basic idea, PLI implements a sparse index
and automatically rewrites SQL queries to include the database-internal row
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Fig. 6: Architecture of DBCarver.

identifier column to perform range scans. PLI can be implemented for both
regular attributes, or order-preserving expressions on attributes.

4.1 Physical Data Organization

The physical layout of table data within a database file must to be known to
build a PLI. In most DBMSes (e.g., Oracle and PostgreSQL), the location of
rows can be determined by accessing the internal {RowID} column. However,
the organization of data within a file may be different than that of the disk
image since the file may not be written to consecutive sectors.

To verify the fragmentation of DBMS files on disk (fragmentation of the
file cannot be determined through {RowIDs}), we use an implementation of
database page carving, DBCarver [29]. Database page carving reconstructs the
contents of relational database pages without relying on the file system or
DBMS itself. This method is inspired by traditional file carving [23, 11] tech-
niques that reconstruct data (active and deleted) from disk images or RAM
snapshots without the need for a live system. Figure 6 provides an overview of
DBCarver, which consists of two main components: the parameter collector(A)
and the carver(F). The parameter detector calibrates DBCarver for the identi-
fication and reconstruction of DBMS pages. To do this, the parameter detector
loads synthetic data(B) into a working version of the particular DBMS, and it
captures underlying storage(C). The parameter detector then learns the lay-
out of the database pages, and describes this layout with a set of parameters,
which are written to a configuration file(E). For example, the parameter de-
tector records the location of row directory, the endianness of addresses, and
the size of each address (typically a 16-bit number) as parameters in the con-
figuration file. A configuration file only needs to be generated once for each
specific DBMS and version, and it is likely that a configuration file will work
for multiple DBMS versions as page layout is rarely changed between versions.
DBCarver has been tested against ten different databases: PostgreSQL, Oracle,



PLI+: Efficient Clustering of Cloud Databases 11

SQLite, DB2, SQL Server, MySQL, Apache Derby, Firebird, Maria DB, and
Greenplum. It can parse disk storage and describe the exact physical layout
(based on disk address) of each database table.

4.2 PLI Structure and Maintenance

The structure of PLI is similar to that of a traditional sparse primary index.
A regular sparse index will direct access to the correct page or sequence of
pages instead of referencing particular rows. For example, in Figure 5, PLI
consists of 3 buckets of approximately sorted data and an overflow bucket
for a total of 20 rows in the table. Instead of storing 20 index entries, PLI
only contains 4; the first bucket covers first two pages with six rows – PLI
structure knows that all indexed values in that range are between #1 and #10
(without knowing the exact order) and can direct the query to scan this range
if the predicate matches. The following two pages belong to bucket two which
includes range between #7 to #14; note that approximate nature of sorting
can result in overlap between buckets, e.g., PLI does not know whether #8
is in the first or second bucket and will direct the query to scan both buckets
for this value. Thus, PLI can conceptually tolerate any amount of out-of-
orderness, but performance will deteriorate accordingly. In addition to the
indexed buckets, we also include the overflow bucket (values [5–13]) which
contains recent inserts.

We next discuss maintenance costs. Interestingly, PLI’s approach requires
no maintenance for deletes. Sparse bucket-based indexing knowingly permits
false-positive matches that will be filtered out by the query after I/O was
performed. Therefore, the index does not change when rows are deleted (e.g.,
in Figure 5, deletion of #6 will not change the first bucket in any way). Update
queries can be viewed as DELETE + INSERT, permitting us to treat updates as
inserts as well.

A new insert would typically be appended at the end of table storage,
unless there is unallocated space on one of the existing pages and the database
is willing to make in-place overwrite (Oracle has a setting to control page
utilization, while PostgreSQL avoids in-place overwrite inserts). If the insert
is appended, the overflow bucket needs to be updated only if the range of values
in the bucket changes. For example, in Figure 5 overflow bucket is [5–13] and
thus does not need to be changed when #10 is inserted into overflow.

There are several ways to determine the location of the newly inserted row
to update PLI (RowID is the internal database identifier that reflects location
of the row). Our current prototype queries the DBMS for it (SELECT CTID in
PostgreSQL or SELECT ROWID in Oracle). However, for bulk inserts we can also
use DBCarver to inspect the storage and determine the RowID ourselves. The
new insert may overwrite a previously deleted row at any position (as we are
avoiding maintenance overheads of clustering), which could potentially widen
range of values in that bucket creating more false-positives on read access. The
degradation is gradual, but eventually the table will need to be reorganized.
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This storage reorganization can be done by targeting specific rows (executing
commands that will cause out-of-order rows to be re-appended) or by resorting
the whole table.

The storage size and the cost to maintain the PLI structure is proportional
to the number of buckets that it uses. We have experimented with different
granularities and bucket sizes – and, in practice, having a bucket of fewer than
12 disk pages does not improve query performance. Assuming about 80 rows
per page, PLI structure only needs one bucket per one thousand (1000) rows.
An index structure of this size can be kept in RAM and used or maintained
at a negligible overhead cost.

4.3 Query rewrite

In order to use PLI index, incoming SQL queries are rewritten to take full
advantage of the current layout of the table. PLI-based predicates are added
to the query to restrict the disk scan range to specific buckets; bucket-based
indexing is approximate by nature and provides a superset range in which
data of interest resides. For example, consider Figure 5 – the following query
predicate:

id BETWEEN #1 AND #6

is rewritten into:
id BETWEEN #1 AND #6

AND (CTID BETWEEN Row1 and Row6)

AND (CTID BETWEEN Row19 and Row20)

The first introduced condition represents a range of regular buckets (in that
case the first bucket from PLI) and the second condition corresponds to the
special overflow bucket. This access range results in a more efficient scan pat-
tern of disk by minimizing seeks and by removing the overhead of a secondary
index. The PLI condition does include false-positives (specifically, id #10
at Row6 and #13 at Row20) but they will be filtered out by the original
query predicate (id BETWEEN #1 AND #6). PLI query rewrite relies on an internal
RowID pseudo-column, exposed by nearly all DBMSes (known as ROWID in
Oracle and CTID in PostgreSQL). In PostgreSQL (but not in Oracle), this
internal pseudo-column should also be indexed for the efficient execution of
PLI-rewritten queries; we note that in PostgreSQL 10 indexing of CTID col-
umn has been disallowed.

4.4 Architecture

The architecture of PLI operation is shown in Figure 7. We rely on the native
database table(A) with no modifications or assumptions about DBMS engine
features (e.g., underlying DBMS may not even support clustering). Initially,
we use DBCarver to inspect table layout as it currently exists. As shown in [29],
looking for specific pages in a table is orders of magnitude faster compared to
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Fig. 7: Architecture of PLI.

full reconstruction of disk image. If the table is sufficiently (approximately)
organized in the desired fashion and can be represented as a sequence of bucket
ranges (e.g., first 10 pages contain function values [0 – 10], next 10 pages
contain function values [9 – 12], etc.), then PLI can be built immediately;
otherwise, we need to reorganize the table. If the table is not already sorted
as we prefer, we impose the ordering by recreating that table structure. In
either case we discard the existing secondary index (as PLI will replace it).
Database user can choose arbitrary ordering that need not be unique or strict;
any function or rule supported by ORDER BY clause would be acceptable. To
order table T on function of columns (A-C), we create a new structure as:

CREATE TABLE T_PLI AS

SELECT * FROM T

ORDER BY (A-C).
This new table structure replaces the original table and requires very little
maintenance from the host DBMS (since new rows can be appended at the
end of the table). Note that any sorting function supported by DBMS can be
chosen (e.g., income-expenses or

√
income).

Once the sorted table is created, we use DBCarver to validate table’s storage
sorting at the physical level. The table is likely to be sorted (or at least mostly-
sorted) as the ORDER BY clause specified as non-clustered tables are generally
stored in order of insertion. However, although such sorting is not guaranteed
– in practice, new table may be stored differently on disk (most notably in
Oracle). Using the underlying sorting, we next generate a bucket mapping
structure, recording RowID boundaries for each bucket and creating the PLI
structure.

4.5 PLI Validation Through Initial Experimentation

Experiments were performed on PostgreSQL 9.6 and Oracle 12c DBMSes. The
limited availability of the database-internal RowID pseudo-column prevented
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us from using other DBMSes. Also, as previously mentioned, newer versions
of PostgreSQL (i.e., 10 and on) do not allow the CTID pseudo-column to be
indexed, making them inapplicable. We used data from the Unified New York
City Taxi Data Set [24]. The experiments reported here were performed on
servers with an Intel X3470 2.93 GHz processor and 8GB of RAM running
Windows Server 2008 R2 Enterprise SP1 or CentOS 6.5.

4.5.1 Experiment 1: Regular Clustering

The objective of this experiment is to compare the performance of a table with
a native clustered index and a table with a PLI. In Part-A, we collected query
runtimes using a predicate on the sorted attribute. In Part-B, we compare the
time to batch insert data into each table. In Part-C, we repeat the queries
from Part-A.

Part A We began with 16M rows (2.5GB) from the Green Trips table sorted
by the Trip Distance column. For each DBMS, we created one table that
implemented the native clustering technique and another table that imple-
mented PLI. Since an Oracle IOT can only be organized by the primary key,
we prepended the Trip Distance column to the original primary key. We then
ran three queries, which performed sequential range scans, with selectivities
of 0.10, 0.20, and 0.30. Table 1 summarizes the runtimes, which are normal-
ized with respect to a full table scan (i.e., 100% is the cost of scanning the
table without using the index) and the number of I/O over different query
selectivity. Note that the I/O access is mandated by the PLI buckets accessed
by the query; therefore, the number of I/Os is proportional to the reported
runtimes. Since our goal is to evaluate a generalized database approach, the
absolute time of a table scan is irrelevant; we are concerned with the runtime
improvement resulting from indexing. In PostgreSQL, both approaches exhib-
ited comparable performance, a few percent slower than the optimal runtime
(e.g., for 0.20 selectivity the optimal runtime would be 20% of the full table
scan). PLI remained competitive with native PostgreSQL clustering – the
slight edge in PLI performance is due to not having the overhead of accessing
the secondary index structure. PostgreSQL has to read the index and the ta-
ble, while PLI access only reads the table (PLI structure itself is negligible in
size). In Oracle, PLI significantly outperformed the IOT for the range scans.
The queries that used a PLI were about three times faster than those that
used an IOT. Oracle performance is impacted by lower average page utiliza-
tion (and unused space) in the nodes of the IOT B-Tree. In all cases, the I/O
cost was similarly reduced through the use of PLI.

Part B Next, we bulk loaded 1.6 million additional rows (250MB or 10% of
the table) into each Green Trips from Part-A. In PostgreSQL, the records
were loaded in 263 seconds for the table that implemented native clustering
and 62 seconds for the table that implemented a PLI. Clustering is a one-
time operation in PostgreSQL and ordering is not maintained as inserts are
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Runtimes #of I/O

Query Selectivity Query Selectivity

DBMS Index Type 0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL
Clustered 15% 26% 38% 2,412 4,181 6,111

PLI 13% 25% 36% 2,091 4,021 5,790

Oracle
Clustered 31% 57% 86% 4,986 9,167 13,831

PLI 12% 21% 32% 1,930 3,377 5,146

Table 1: Query runtimes as percent of a full table scan and the number of I/O (clustered
on attribute vs PLI).

performed. Therefore, the observed overhead was primarily associated with
the clustered index itself. A PLI does not have a significant maintenance cost
due to its sparse and approximate nature. In Oracle, the records were loaded
in 713 seconds for the IOT, and 390 seconds for the table that implemented a
PLI. Since IOT used a B-Tree to order records, the observed high overhead
was caused by maintenance of the B-Tree as new records were inserted. Note
that the I/O costs are a lower-bound approximation based on query runtimes.
The implementation of IOT in Oracle is database-specific and not publicly
available. IOT may have incurred further I/O overheads.

Runtimes #of I/O

Query Selectivity Query Selectivity

DBMS Index Type 0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL
Clustered 90% 115% 139% 15,922 20,344 24,590

PLI 23% 33% 44% 4,069 5,838 7,784

Oracle
Clustered 123% 238% 347% 21,760 42,104 61,387

PLI 20% 31% 40% 3,538 5,484 7,076

Table 2: Query runtimes as percent of a full table scan and the number of I/O (clustered
on attribute vs PLI after bulk insert).

Part C To evaluate the maintenance approach for each index, we re-ran the
queries from Part-A. Table 2 summarizes the resulting runtimes. For both
DBMSes, the queries that used a PLI incurred a penalty of 10% or less com-
pared to Part-A, which is consistent with Part-B inserting 10% worth of new
rows. All newly inserted records were appended to the end of the table and
were therefore incorporated into the overflow bucket (requiring minimal main-
tenance in the process and causing limited query performance deterioration).
In PostgreSQL, the queries using the native clustered index slowed down by
a factor of about 4 due to the interleaving seeks inefficiency discussed in Sect.
1. In Oracle, the queries using native clustering also slowed down by a factor
of about 4, albeit for a different reason. While the IOT maintains logically
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sorted records within the leaf node pages, these leaf node pages are not neces-
sarily ordered on disk during B-Tree re-organization resulting in an increased
number of seeks for the queries.

4.5.2 Experiment 2: Expression Clustering

The objective of this experiment is to expand upon Experiment 1 by evalu-
ating an expression-based (rather than attribute-based) index to demonstrate
the extendability and flexibility of the PLI approach. In Part-A, we collected
query runtimes using a predicate on the sorted attribute. In Part-B, we com-
pare the time to batch insert data into each table. In Part-C, we re-run the
same queries from Part-A.

Part A We began with 16M rows (2.5GB) from the Green Trips table, and
we sorted the table on Tip Amount

Trip Distance function (i.e., tip-per-mile for each trip as

our order-preserving function). For each DBMS, we created one table that im-
plemented the native clustering technique and another table that implemented
PLI. As Oracle does not support function-based indexes, we created a com-
puted column, and prepended this computed column to the primary key so
an IOT could be built. We then ran three queries, which performed sequential
range scans with selectivities of 0.10, 0.20, and 0.30.

Table 3 summarizes the number of I/Os and the runtimes, with runtimes
normalized with respect to a full table scan over different query selectivity
values. These baseline performance results are very similar the result from
Experiment 1: Part-A demonstrating that query access for the function based
index does not impose a significant penalty for any of the approaches. The
runtimes for the Oracle IOT were slightly higher, which we believe were caused
by additional storage space used by the computed column.

Runtimes #of I/O

Query Selectivity Query Selectivity

DBMS Index Type 0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL
Clustered 13% 25% 37% 2,091 4,021 5,951

PLI 14% 24% 36% 2,252 3,860 5,790

Oracle
Clustered 30% 62% 100% 4,825 9,971 16,082

PLI 11% 21% 32% 1,769 3,377 5,146

Table 3: Query runtimes as percent of a full table scan and the number of I/O (clustered
on expression-based index vs PLI).

Part B Next, we bulk loaded 1.6 million additional rows (250MB or 10% of
the table) into each Green Trips from Part-A. For the Oracle IOT containing
the computed column, we previously generated the value, and we stored it
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in the raw data file. In PostgreSQL, the records were loaded in 917 seconds
for the table that implemented native clustering, and 70 seconds for the table
that implemented a PLI. This demonstrates that a traditional expression-
based index is far more expensive to maintain than a regular index, producing
much higher overheads. PLI requires very minimal maintenance – same as
in Experiment 1, without an expression-based clustering. The insert cost into
the table itself is using append and is thus comparable for both. In Oracle,
the records were loaded in 1527 seconds for the IOT, and 408 seconds for the
table that implemented a PLI. This drastic overhead increase in the time to
load the data (compared to Experiment 1: Part-B) can be explained by data
distributed. The data in Experiment 1 was more uniform requiring less B-
Tree rebuilding, while computed ordering was much more scattered resulting
in more B-Tree restructuring.

Part C To evaluate the maintenance penalties for each index, we re-ran the
queries from Part-A as summarized in Table 4. Just as in Experiment 1, the
queries that used PLI increased in cost by about 10% of a full table scan –
as expected because inserted records were appended to the overflow bucket
causing queries to scan additional 10% of overflow data. In PostgreSQL, the
runtimes for the native expression-based clustered index increased by about
a factor of 3 due to interleaving seeks as in Experiment 1. Interestingly, the
penalty caused by computed index and storage fragmentation was not nearly
as significant as regular built-in clustered index. We expect that PostgreSQL
makes some additional effort to mitigate the overhead of interleaving seeks
when utilizing an expression-based clustered index. In Oracle, the queries using
the IOT increased by a factor of about 7, which is significantly more than
Experiment 1: Part-C. This difference can be attributed to a greater amount
of fragmentation caused by the B-Tree restructuring in Part-B.

Runtimes #of I/O

Query Selectivity Query Selectivity

DBMS Index Type 0.10 0.20 0.30 0.10 0.20 0.30

PostgreSQL
Clustered 52% 79% 93% 9,199 13,976 16,452

PLI 23% 32% 44% 4,069 5,661 7,784

Oracle
Clustered 259% 461% 706% 45,819 81,554 124,896

PLI 20% 30% 40% 3,538 5,307 7,076

Table 4: Query runtimes as percent of a full table scan and the number of I/O (clustered
on expression-based vs PLI after bulk insert).
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5 PLI+: An In-memory Physical Location Index for Delayed
Clustering

5.1 Limitations of PLI

We demonstrated that PLI is competitive with a clustered index when per-
forming read-only range scan queries on approximately sorted data. However,
as inserted data is added to the overflow-page (or overflow bucket), PLI per-
formance degrades (since the entire overflow bucket is always scanned). To
address this limitation, we propose an extension of PLI called PLI+. PLI+

implements bucket-based reads similar to PLI, but additionally maintains per-
formance for insert-intensive workloads. We describe PLI+ in the remainder
of this paper.

5.2 Overview of PLI+

Fig. 8: The Architecture of PLI+.

PLI+ is a write-optimized external index for PLI that live databases can
use to approximately sort the data in memory and reduce the number of
I/Os. PLI+ addresses two primary shortcomings of PLI. First, as the size
of overflow bucket in PLI increases, there is an increased need to cluster,
reducing the effectiveness of the index. PLI+ further delays the need to cluster
by approximate sorting of incoming data in memory. Current techniques to
sort data either sort data locally in memory, i.e., no global sorting of data
requiring an expensive merge step later [19], or require large buffers to sort data
in its entirety. PLI+ approximately sorts tables by feeding incoming data into
several intervals and maintaining a tree of intervals in memory. Data within
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Fig. 9: The Internal Structure of PLI+.

each interval is not sorted. In subsequent section, we describe the structure
of this in-memory interval tree, how it is initialized, and maintained. Second,
PLI+ improves on PLI insertion granularity; PLI inserts new data at a page
level (typically at 32KB or 64 KB). PLI+ reduces the number of I/Os required
for clustering by favoring large granularity of I/O (i.e., page size is larger than
512KB) [17].

5.3 PLI+ Structure, Initialization and Querying

Figure 8 shows how PLI+ operates along with PLI table. PLI+ consists of
three components, the in-memory interval tree, the buckets and their positions
in a log file, and the flushing buffer. Figure 9 describes how the three com-
ponents relate to each other. First, a path of the in-memory interval tree3 is
shown from root to leaf nodes. Leaves consist of multiple data buckets, with
each bucket identified by an interval [li, hi]. Note that the intervals of all leaves
are disjoint. Also, in order for the ranges of in-memory tree to cover all input
keys, we set the intervals of leftmost and rightmost leaf nodes with very large
and very small numbers representing infinity (i.e., ((−∞, h0] and [ln,+∞)).
Buckets consist of pointers to data tuples stored in a data buffer. Non-leaf

3 This is a skeleton tree. At the initial stage, all tree nodes are initialized with meta data
(e.g., intervals, pointers, etc.) but nodes initially do not contain any data.
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nodes simply record the Interval[Lowi, Highi] over all buckets of the subtree
pointed by it. Thus technically, all of the data is stored in the leaves, while
intermediate nodes are only used to store broader interval ranges and guide
the search operation to narrower intervals in the leaves.

As a new data tuple (each tuple has a key) arrives, in-memory tree will
be traversed using the tuple’s key to find out the appropriate leaf node to
append this new tuple. When a bucket is full, its data (i.e., tuples) will be
immediately moved from the data buffer to a flushing buffer, its metadata is
indexed in PLI table and the interval that previously contained this bucket
is cleared. This means that there are no full leaf nodes in the in-memory tree.
In other words, it is always possible to find an appropriate leaf node to insert
a new tuple.

Flushing buffer contains full buckets which are ready to be flushed onto
the database disk. We distinguish between data buffer and flushing buffer
as PLI+ favors large granularity I/O and aggregates data in flushing buffer
before writing it out to disk. For example, in our most optimal setting a
typical bucket size is around 256KB, and a flushing buffer is of size 20MB,
so one disk I/O is performed when approximately 80 buckets are full. PLI+

also records which interval ranges within leaves generate more full buckets.
These are logged in a bucket-position data structure. This information will be
used for maintaining the structure of PLI+ so as to utilize maximum available
memory for organizing the data in intervals (see Sect. 5.4). In other words,
more memory must be allocated for intervals that have more data distributed
within them. Currently, we initialize the intervals of the in-memory tree from
an interval B-Tree [6], which provides historical initialization. Alternatively,
uniform or Gaussian distribution can also be used. The next section describes
how these distributions can be used to determine initial intervals.

5.3.1 In-memory Interval Tree Initialization

We support three methods to initialize the in-memory interval tree’s struc-
ture: (i) historical initialization, (ii) uniform distribution and (iii) Gaussian
distribution. We will briefly describe these methods and their assumptions; all
notations used in this section are described in Table 5. Historic initialization
was used for experiments.

Historical initialization: This method relies on the assumption that the data
distribution in the injection flow follows a consistent pattern. Therefore, the
structure of in-memory interval tree should adapt to the history of data dis-
tribution. Based on the knowledge of data distribution log file we build an
interval B-Tree [6] and then copy its structure (i.e., all node metadata and its
intervals) to in-memory interval tree. At the beginning stage (when there is no
history of data distribution), we consider data to be using uniform distribution
that will be discussed in the next part.
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Table 5: Notations used in the paper.

Notation Description
NNode Number of nodes
NB Maximum number of buckets in Buffer

NI Maximum number of buckets in a leaf node

BT Number of buckets in database
CSize Buffer cache size

BSize Bucket size

[XL;XH ] Range value of indexed key
fu(x) uniform distribution function

fG(x) Gaussian distribution function

θ Buffer cache usage factor
µ The mean value

δ The standard division

B(Ni, Pj)
Number of generating buckets at node Ni,
position Pj during time window WT

M Average number of generating buckets

Bh Upper-bound number of generating buckets

Bl Lower-bound number of generating buckets

Uniform distribution: The uniform distribution [31] is defined by Formula 1.
The uniform distribution in indexed keys of the insertion leads to equal interval
division for the in-memory interval tree. Hence, we initialize the structure
of the in-memory interval tree with uniform intervals. Particularly, the total
number of nodes (NNode) and maximum number of buckets in buffer (NB) of
the in-memory interval tree are determined by Formula 2. Interval information
of each bucket is defined by Formula 3.

fu(x) =

{
1
b−a for b ≥ x ≥ a
0 for x > b or x < a

(1)

NB = θ
CSize
BSize

and NNode =
NB
NI

= θ
CSize

BSize.NI
(2)

Intervali = (ai, bi) ,

{
ai = a+ i. b−aNB

bi = ai + b−a
NB

(3)

Gaussian distribution: Gaussian distribution or normal distribution [31] is de-
fined by Formula 4. The division of intervals is made following Gaussian dis-
tribution as defined in 5, where NI is determined by Formula 2. The main idea
is to have small interval in the high rate distribution range and vice versa.

fG(x) =
1√

2πδ2
e−

(x−µ)2

2δ2 (4)

Where µ is the mean value and δ is the standard deviation.

Intervali = (ai, bi) ,

{
ai = XL + i. 1

fG(x).NB

bi = ai + 1
fG(x).NB

(5)
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Even though the in-memory tree structure (described in the next part)
will dynamically adjust to the current status of input data distribution, it is
important to select a suitable initialization technique at the beginning. First,
in-memory tree will not immediately arrive to the optimal structure, instead
gradually adapting – and a better in-memory tree may only be obtained after
several maintenance calls. Second, all of the buckets generated before the ad-
justment takes place are not compact and if stored on disk, will degrade the
scanning performance.

5.3.2 PLI+ Querying

Algorithm 1 presents the search operation in PLI+. It searches for all tuples
in a database table where keys belong to a given interval. Query answer in
PLI+ is a combination of the results of two searches (Line 5): tuple scanning
in the in-memory PLI+ (Lines 6-17) and bucket scanning in the PLI index
table (Lines 18-21). Searching in PLI+ returns tuples that are part of the
query result, while the results (in buckets) from PLI index table are set of
on-disk buckets which need to be further filtered to eliminate irrelevant tuples
(Line 4). To search over interval ranges, the search value is compared with
the maximum high value over all interval ranges in the subtree rooted at a
non-leaf node (Line 15).

Algorithm 1: Search for all tuples whose keys belong to a given interval.

1 Search(interval, Output):
2 SearchTree(root, interval, Tuples1);
3 SearchPLI(PLIRoot, interval, Bucket);
4 Tuples2 ←− Load and filter the list of buckets in Buckets
5 Output ←− Combine Tuples1 and Tuples2

6 SearchTree(node, interval, Output):
7 if (node.isLeaf) then
8 foreach (entry in node) do
9 if (entry.key is inside interval) then

10 Output ←− Add entry to the result list;

11 else
12 for (i = 0 to node.length) do
13 if (interval[1] < node.child[i].interval[0]) then
14 break;

15 if (interval[0] ≤ node.max[i]) then
16 /*Search in each child*/
17 SearchTree(node.child[i], interval, Output);

18 SearchPLI(PLIroot, interval, Output):
19 foreach (bucket in PLIroot.Table) do
20 if (bucket.interval intersects with interval) then
21 Output ←− Add bucket to the result list;
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5.4 Maintaining PLI+

The intervals of the in-memory interval tree are created during the initializa-
tion stage. However, the distribution of indexed attribute values may change
rapidly, requiring adjustment in the interval ranges in the in-memory interval
tree. The in-memory interval tree resides on a restricted pool of data buffer.
Each new incoming data tuple is appended to the end of this buffer. A bucket
for an interval range is formed when a fixed number of data tuples (e.g., 1000
or 2000) are placed into the buffer. When the bucket is full, it is moved to a
flushing buffer. Many interval ranges in an incoming data distribution do not
receive a sufficient number of tuples to become full, and thus must be grouped
or merged to form a full bucket, so that it can be moved to the flushing buffer.
Similarly, if a specific interval range received a large number of tuples that
form too many full buckets, this interval must be split because the large num-
ber of full buckets corresponds to a high density of data in this interval. As a
result, the chosen interval range might be too broad for high selectivity queries
to perform well, i.e., they may read more data than required.

To adjust the in-memory interval tree, currently we adopt a greedy heuris-
tic. We note a single parameter, the number of times a given interval range
becomes full to form a bucket, in the bucket position log data structure, and
use this to merge or split bucket. If a given interval range in the leaf node has
generated a number of buckets that is larger than the maximum value of a
threshold, it is split, else if the number if greater than the minimum value of a
threshold, it is merged with the neighboring bucket. Algorithm 2 describes the
procedure. First, a data buffer to keep the new tree will be initialized (Line 3).
Next, it begins with the left leaf-node of the tree (Line 2) and goes through
all remaining leaf-nodes. At a position (i.e., an entry in a node), this process
counts the history of generating buckets for this position in the tree (Line 7).
If the large number of generating buckets (compared to the average number
of buckets) is counted, then a split is applied on this position. Alternatively, if
there is a small number of buckets generated at an entry, it should be merged
with its sibling entries (Line 8). Finally, the new tree will be built on top of
the chain of new leaves (Line 18).

It is to be emphasized the PLI+ is a tree for delaying clustering in databases
that requires clustering due to large number of bulk-inserts, and the user
queries are predominantly read-only. This is the case of most scientific databases
in which large number of inserts but few deletes and updates are present. Con-
sequently, delete and update operations do not need to be optimized and PLI+

treats them similarly to PLI.

6 Experiments

In Sect. 4.5, we have shown the effectiveness of PLI for a variety of queries
and DBMSes. In this section, we evaluate the performance of PLI+ as well
as demonstrate its usability.



24 Dai Hai Ton That et al.

Algorithm 2: Reshape in-memory interval Tree’s structure

1 Reshaping():
Input : The root of the tree, Bucket Position.log
Output: The root of the new tree

2 leafNode ←− Get the left leaf-node of the tree
3 buffer[] ←− initialize a data buffer for the new tree
4 while (leafNode != NULL) do
5 buffer.cur ←− Load leafNode to the first available position in buffer
6 foreach (entry in buffer.cur.data) do
7 1. Count the number of generated bucket at this current position of

entry and leafNode in the tree using data from BucketPosition.log
8 2. Determine which actions (i.e., Split, Merge or Keep) will be applied

to entry according to above number

9 leafNode ←− leafNode.sibling

10 /*Merge operations*/
11 foreach (entry that requires a merge in buffer) do
12 1. Get a sibling entry having criteria: not null, small number of generated

buckets.
13 2. Merge entry with its sibling entry

14 /*Split operations*/
15 foreach (entry that requires a split in buffer) do
16 split this entry into 2 sub-entries

17 Clear content of root of the tree
18 root ←− Rebuild the new root from the chain of leaf nodes in buffer

(a) NYC Datasets

Table Records(M) Size(GB)
NYC T1 1.5 .23
NYC T2 15 2.2
NYC T3 30 4.4
NYC T4 59 8.8
NYC T5 148 22

(b) HEP Datasets

Table Records(M) Size(GB)
HEP T1 28 3
HEP T2 289 30
HEP T3 587 61
HEP T4 1200 122
HEP T5 2900 305

Table 6: NYC and HEP Dataset Sizes.

Initial Setup Our experiments were performed against a PostgreSQL RDS
cloud instance running Ubuntu 16.04 64-bit OS with an Intel Core i7-3770
3.4GHz CPU, 8GB of main memory, and a 1TB SATA HDD. We have selected
two real-world data sets: New York City (NYC) Taxi dataset of year 2016 [25]
and High Energy Physics (HEP) dataset [21]. We used various table sizes
from each dataset, which are summarized in Tables 6(a) and 6(b). To perform
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Selectivity

Range Query Key Range NYC HEP

Q1 0.0025 0.028 0.031

Q2 0.005 0.035 0.059

Q3 0.010 0.067 0.104

Q4 0.020 0.111 0.175

Q5 0.050 0.191 0.268

Table 7: Query Range and Selectivity.

experiments for PLI+, we initialized a table with 1GB of data clustered on
the trip distance column in NYC Taxi dataset and the Pt of Muon column
in HEP dataset, and bulk loaded the remaining raw data. A set of read-only
(i.e., SELECT) queries that we used to measure performance of our indexes is
summarized in Table 7. In Table 7, key range refers to delta difference in the
value of the clustered attribute, i.e., range between X and X+ < keyrange >,
where X refers to the value of the attribute. The selectivity refers to the ratio
of the number of tuples in the query result to the total number of tuples in the
database. Selectivity is larger than the key range due to higher density of the
data overlapping the key range (e.g., in Q4, a 2% range query covers 11.1%
and 17.5% in NYC and HEP datasets respectively).

Data Distribution To demonstrate the benefit of PLI+, we examine the en-
tropy of the indexed attribute, i.e., trip distance column in NYC Taxi dataset
and the Pt of Muon column in HEP dataset as present in the downloaded
dataset. The entropy [12] is computed based on Equation 6. In Equation 6, pi
is the frequency of occurrence of a given value of the indexed attribute over
the total number of values in the domain range. Entropy, E, ranges from 0 to
1, with a random distribution at E = 1.

E = −
∑

pi ∗ logn(pi) (6)

To compute entropy, we constructed 20 1-million-tuple windows, with each
window containing around one million of tuple insertions. Figure 10 shows
the entropy values for NYC data remain around 0.71 for all 20 windows, and
for HEP periodically ranges from 0.75-0.85. Nevertheless, entropy for both
datasets is high, showing that the data values are mostly random.

Comparative Indexing Methods We selected three different indexing approaches
that we believe provide a representative competition against PLI+: secondary
index, PLI [30], and LSM-Tree [19]. The secondary index served as a base-
line comparison since it is the most commonly utilized indexing technique. We
re-used our previous work to implement PLI, since PLI+ is essentially an ex-
tension of this work. We applied 100MB of buffer for all evaluated candidates.
We implemented LSM-Tree since this approach was designed for massive data
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Fig. 10: The entropy of indexed key in NYC and HEP datasets.

(a) NYC Datasets

Table Clustering (min)
NYC T1 0.9
NYC T2 6.8
NYC T3 11
NYC T4 34.5
NYC T5 93.6

(b) HEP Datasets

Table Clustering (hour)
HEP T1 0.4
HEP T2 1.5
HEP T3 2.5
HEP T4 8
HEP T5 21.6

Table 8: Time to cluster NYC Taxi and HEP dataset tables.

ingestion. To ensure fairness of our comparison, we applied the same configu-
ration to all indexing approaches.

It is important to emphasize that range scan query performance of a clus-
tered index is always optimal, since the data in table is always physically
ordered on disk. However, keeping a table clustered is unrealistic as the table
size and the query throughput increases. The cost to maintain a clustered in-
dex is proportional to the table size as shown in Table 8. During the clustering
maintenance operation time, the database may experience a downtime and the
table may become inaccessible for querying.

6.1 Comparison of Query Execution Performance

We examine the impact on query performance for different indexing methods
i.e., clustered index, unclustered index, table scan, PLI, PLI+, and LSM-Tree.
We furthermore considered PLI+ at different bucket size settings (i.e., 250 tu-
ples/bucket, 500 tuples/bucket, 1000 tuples/bucket and 2000 tuples/bucket).
For this experiment, we indexed the NYC T5 dataset, which is 22GB in size,
and run our queries with different data selectivity varying from 0.01 to 0.57.
Our primary result is shown in Fig. 11 (we excluded the extremely slow run-
times of unclustered index from the chart for better readability).

The cost of full table scan stands at a constant value of 350 seconds. We
selected the cost of table scan as a baseline and calculated the relative per-
formance compared to that option. Figure 11 shows the relative performance,
normalized with respect to a full table scan (i.e., 100% is the cost of scanning
the entire table without using indexing). At one extreme, unsurprisingly, is
the unclustered index, which performs poorly over queries at all selectivities.
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Fig. 11: Relative Performance of Queries at Varying Selectivity with Different Indexing
Methods on Hard Disk.

With a high number of random I/Os in the unclustered index, execution time
of querying even 0.01 of the table is slower than that of the table scan. The
query execution time of unclustered index rapidly grows as query selectivity
increases. For example, it is 10X slower than the table scan at query selec-
tivity of 0.03. We therefore excluded the runtimes of unclustered index for
better readability of the chart. On the other extreme is the clustered index
that always outperforms other indexing methods at all values of query selec-
tivity. This is expected, since table data is physically clustered on disk before
querying. However, maintaining physical clustering data is impractical due to
its high cost (see details in Sect. 3 and Table 8). The performance of PLI is
dominated by the cost of overflow bucket scan. As discussed earlier, PLI is
designed for read-oriented database and approximately sorted data. However,
this experiment deals with large injection and randomly ordered data. Specif-
ically, we started with 1GB of clustered data and inserted 21GB of unsorted
data. Therefore, most of data in PLI is redirected to the overflow-page, de-
grading the scanning performance of PLI. Scanning overflow-page of PLI is
done sequentially with large granularity I/Os, and thus the query execution
cost becomes similar to table scan over query selectivities higher than 0.01.

The performance of queries using PLI+ is significantly better than other
candidates and tends to approach the performance of the clustered index (op-
timal performance) for high selectivity queries (0.01-0.15) over bucket sizes
larger than 1000. The larger the size of bucket used in PLI+, the closer its
query execution times are able to track clustered index runtime, improving
PLI+ runtime for larger ranges of query selectivity. For example, PLI+(2000)
shows the best performance among the tested buckets, with better performance
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Fig. 12: Performance of Queries with Different Indexing Methods on SSD.

than a table scan for query selectivity as high as 0.4. It is to be emphasized
that in large scientific databases full table scans or queries with low selectivity
are infrequent; often scientific users are looking for needles in haystack [28].

We can achieve better performance in PLI+ by increasing the size of the
bucket. However, having very large bucket size requires larger buffer for in-
memory interval-tree to be loaded. Furthermore, there was no difference in
the bucket compactness value ARB (see Sect. 6.3) for bucket sizes larger than
1000 tuples/bucket. The minimum amount of data accessed by queries with
low selectivity is expected to be larger as bucket size is increased (since at
least 1 full bucket must be scanned by all query), and thus a very large bucket
size can degrade overall PLI+ performance. In our later evaluation, to avoid
using large buffer for in-memory interval tree, we fix the bucket size at 1000
tuples/bucket, as our compactness measure presented in Sect. 6.3 reaches the
maximum value at this bucket size.

We also evaluated query runtimes on the NYC Taxi dataset (i.e., NYC T5)
for each indexing approach on SSD drives. Figure 12 summarizes these query
runtimes. First, the performance of all methods is improved on SSD, since the
throughput of SSD is much better than HDD. Also, because the cost of random
I/O is similar to sequential I/O on SSD, we observed a significant improvement
in query runtimes of both unclustered index and LSM-Tree indexes compared
to HDD results. PLI+ offers the smallest execution time in all types of queries
on SSD due to large granularity of reading data, which is favored in SSDs; SSD
performance decreases at page I/O which is performed in PLI and LSM.

6.2 Amount of Data Accessed

The objective of this experiment is to compare the the amount of data accessed
by the different indexing approaches.

To compare the amount of data accessed by each indexing approach, we
executed our set of queries (Table 7) against the NYC Taxi and the HEP
datasets. We measured the data access for each index by collecting the read
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Fig. 13: Amount of data accessed by different indexing methods. We eliminated PLI due
to very large amount of data accessed.

data based on our implementation of PLI+ and LSM-Trees, and clustered
index. Before we executed each query, we flushed both the DBMS and OS
caches.

Figure 13 summarizes the results for the data access. As expected, the
LSM-Trees and the clustered index accessed a similar amount of data for
all queries from both the NYC and HEP datasets. This is because data in
the LSM-Trees and the clustered index are completely clustered. Meanwhile,
PLI+ accessed a slightly higher amount of data compared to the LSM-Trees
and clustered index. The explanation is that PLI+ uses approximately sorted
intervals thus reading some unnecessary data. Also, PLI+ reads data in a
bucket units rather than individual pages, thus an upper bound on the number
of buckets covering matching data may be accessed instead of the exact number
of pages. This performance in PLI+ (in amount of data accessed) shows that
the quality of buckets in PLI+ is close to optimal intervals for the queries
(i.e., high level of compactness, see Sect. 6.3 for the details) leading to fetching
only the relevant data in PLI+. Finally, PLI accessed significantly more data
than the other indexing approaches in this experiment. We eliminated PLI
from Fig. 13 due to its very large amount of data accessed. PLI incurred a
significant penalty for all queries due to the inserted data being appended to
the overflow bucket, and because the entire overflow bucket is always scanned.

6.3 The Quality of Buckets in PLI+

PLI+ inherits the idea of using bucket instead of tuple/row from PLI to favor
the large granularity in I/O access. However, the exact amount of accessed
data depends how distributed the data is in the buckets of PLI+. In this
experiment, we show that in fact PLI+’s interval indexing generates compact
buckets. To measure compactness, we define a metric that compares the range
of minimum and maximum values in a bucket in for completely sorted data
and the range of minimum and maximum values in same-sized PLI+ bucket.



30 Dai Hai Ton That et al.

Bucket size (tuple/bucket) Raw input data PLI+

250 0.00316 0.382
500 0.00529 0.519
1000 0.00869 0.9996
2000 0.01865 0.9999

Table 9: Compactness of Buckets in PLI+.

For a given bucket size, we sum this over all buckets, as shown in Equation 7.
The average relative bucket range factor (ARB) is:

ARB =

∑K
i=1 |Range(Bucketsortedi )|∑K
i=1 |Range(BucketPLI

+

i )|
(7)

in whichK is the total number of buckets in a table, |Range(Bucketoptimali )|
and |Range(Bucketreali )| are the range of the indexed values in a bucket of
same size that is completely sorted and in PLI+, respectively. ARB → 1
(ARB approaches 1) means the buckets are highly compact, similar to per-
fectly sorted data; whereas ARB → 0 (ARB approaches 0) means the values
are distributed at random. Note that PLI+ does not care if individual buckets
are sorted internally, and therefore we do not consider the order of tuples in
a bucket. Rather, we are concerned with how many values from other buckets
have been injected into a given bucket due to sub-optimal merge and split
operations in PLI+.

The evaluation of the compactness of buckets in PLI+ over different bucket
sizes is presented in Table 9. We used the data from the NYC T2 table. Our
results show that compactness improves as bucket size increases—1000 and
2000 rows/bucket are closest to the ideal value of 1. While we are still working
on proving the result formally, intuitively at smaller sizes even a deviation of
a few values between buckets, makes the ARB value gravitate to 0. A larger-
sized bucket has less potential of scattering its values in other buckets (e.g.,
a bucket set to the size of the entire table will always have an ARB value
of 1). However, there are two penalties associated with larger bucket sizes.
First, a larger bucket requires more memory to store in the in-memory interval
tree; second, highly selective queries will experience additional I/O that is not
needed to satisfy the query (e.g., if bucket size is equal to the size of the table,
all queries will scan the entire table regardless of their selectivity).

6.4 The Size of the Constructed Index

The objective of this experiment is to evaluate the storage requirements for
PLI+. For this we compare the index sizes used by each indexing approach.
To compare the index sizes, we collected the storage size of each index for our
datasets when all data was inserted, i.e., around 22GB on NYC Taxi dataset
and 305GB on HEP dataset. Figures 14(a) and 14(b) summarize the index
sizes for each indexing approach in NYC Taxi and HEP datasets, respectively.
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Fig. 14: Sizes of Constructed Index on NYC Taxi and HEP Datasets.

As shown in these figures, PLI has the smallest index size; whereas secondary
index and LSM-Tree have large sizes in all datasets. While one may argue
that with large memory sizes, the amount of memory that LSM consumes is
small, a closer observation shows that in larger datasets (belonging to HEP),
LSM consumes gigabytes of memory, which can be very expensive on a cloud
instance. In PLI and PLI+ data is grouped and indexed by buckets. Bucket
interval is selected as indexed key. This means the size of index is reduced
by the number of tuples in bucket. Compared to PLI, PLI+ organizes the
overflow page into buckets and indexes them, thus the number of buckets
indexed in PLI+ is larger than that in PLI.

7 Conclusion

We have presented PLI – a generalized clustered indexing approach that can
be integrated into a live relational database using ROWID column. This in-
dexing approach uses a bucket-based sparse indexing structure, which results
in a very lightweight and easy-to-maintain index. The sparse pointers into the
table can easily tolerate approximate clustering (i.e., reordering within the
bucket is irrelevant) and trivially allows PLI variations to use an expression-
based index to match query predicate. DBMSes could expose ROWID column
further to make custom clustered index creation simple for the user – or this
approach can be used to create a generation of better clustered indexes inside
the database engine, as existing engines do not implement true (i.e., textbook-
like) sparse clustering indexes. Moreover, we also propose an extension of PLI
(PLI+), a bucket-clustered indexing method for live relational databases that
can be applied to both read-intensive workflows or huge injection workflows.
This extension overcomes the overflow limitation in PLI by applying the ap-
proximation sorting with an efficient B-Tree-like structure to re-organize the
data into buckets before storing and indexing them on secondary storage.

In the future, we plan to apply PLI+ in the context of spatio-temporal
data as well as using this technique in NoSQL context. We would also like to
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endow PLI+ with an improved self-tuning algorithm that allows it to adapt
to any kind of data input distribution.
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