
Reproducible Notebook Containers using
Application Virtualization

Raza Ahmada, Naga Nithin Manneb, Tanu Malika
aSchool of Computing, DePaul University, Chicago, IL, USA

b Argonne National Laboratory, Lemont, IL, USA
Email: {sra0nasir@gmail.com, nithinmanne@gmail.com, tanu.malik@depaul.edu}

Abstract—Notebooks have gained wide popularity in scientific
computing. A notebook is both a web-based interactive front-
end to program workflows and a lightweight container for
sharing code and its output. Reproducing notebooks in different
target environments, however, is a challenge. Notebooks do
not share the computational environment in which they are
executed. Consequently, despite being shareable they are often
not reproducible. The application virtualization (AV) method
enables shareability and reproducibility of applications in hetero-
geneous environments. AV-based tools, however, encapsulate non-
interactive, batch applications. In this paper, we present FLINC,
a user-space method and tool for creating reproducible notebook
containers. FLINC virtualizes the notebook process that enables
interactive computation and creates notebook containers, which
include the environment and all data dependencies accessed
by the notebook file. It relies on provenance collected during
virtualization to ensure the correct behavior of a notebook when
run repeatedly in different environments. We demonstrate how
FLINC exports notebook containers seamlessly to non-notebook
environments. Our experiments show that FLINC creates lighter
weight containers as compared to equivalent non-interactive,
batch containers, and preserves the same interactive workflow
for the user as in current notebook platforms.

I. INTRODUCTION

Computational notebooks (e.g., Jupyter [1] or Apache Zep-
pelin [2]) have become a popular choice for scientific comput-
ing. Notebooks support interactive development of workflows
in which users get immediate feedback on executed parts of a
workflow. This is useful as users can test and debug workflows
as they develop. The programming style induced by notebooks
is also contrary to classical workflow systems which require
the entire workflow to be specified upfront. Consequently,
notebooks are being used for a variety of workflows for
exploring data, executing models, and visualizing results.

Sharing of notebook files (e.g. .ipynb files) allows other
users to interactively repeat the workflow specified in the
notebook. Consider Figure 1, which shows an example of a
notebook file in which the workflow is specified as a sequence
of code ‘cells’. Each cell describes a step of the workflow
computation. Data results are obtained by manually triggering
cell execution, and are often part of the notebook file. Once a
user shares the notebook file for reproducibility, another user
runs all cells again and gets the same or similar result1. A
user can also interactively change the workflow, such as the

1subject to non-deterministic constructs in the program.

type of plot to be generated to further validate the result. Such
sharing and repeating improves collaborative analysis.

While a notebook file is always shareable, it does not
guarantee reproducibility. A notebook file is a container for
code and data results; the container, however, does not include
dependencies stated in the cells. Users must often download
explicit dependencies, such as data dependencies mentioned
in the program or dependencies mentioned in the import
statements. But users do not automatically download implicit
dependencies, such as the dependencies needed by GeoPandas
and Rasterio in the notebook file of Figure 1. This creates
a ‘dependency hell’ scenario, in which dependencies are
available in the host environment in which the user originally
developed the notebook, but not in the target environment.

Fig. 1: An illustrative notebook file N1 which combines script
and shell execution. Shell execution is via ! commands.

Application virtualization is a lightweight method for
sharing code, data, and environment of an application that
addresses ‘dependency hell’ scenarios. Several recent sys-
tems [3], [4], [5] use application virtualization as a method
to audit the execution of a program, and create a container-
like package comprising all files (code, data, and environment)



referenced by the program during its execution. This package
repeats the application in different environments. These system
tools have much to offer, especially to enable computational
reproducibility [6] of scientific models and collaborative ana-
lytics [7], [8] shared on notebook-based platforms. However,
these systems currently assume batch workflows, which are
classically developed with scripts and are non-interactive.
They do not support web-based, interactive notebooks, which
necessitates auditing client-server communication protocols
required to enable interaction.

A straightforward approach would be to extend application
virtualization to the underlying client and server modules
of the notebook system. However, we observe that such an
extension only enables strict reproducibility of notebooks, i.e.,
a user can only repeat the audited notebook but not modify
it, since modification introduces new communication between
the client and server that was not previously audited. This
is a severe limitation for notebooks which enable interactive
development and in which users can add, modify, and delete
cells and change their order of execution. Thus, we need
to extend application virtualization in such a way such that
the resulting notebook containers can be seamlessly shared,
repeated and flexibly reproduced by changing code and data
in different environments. Such containers must preserve the
fundamental interactive property of notebooks–to add, modify,
and delete cells—so that users’ interaction with the new
environment is at least as powerful as the original environment.

In this paper, we describe how to systematically extend
application virtualization to notebook-based platforms by
preserving the connection information and redirecting it as
needed. To extend, FLINC creates compatible kernels for a
notebook file, ensuring that the file is correctly audited in the
host environment and reproduced in the target environment.
During audit phase, FLINC creates a lightweight notebook
container which includes all the dependency files that are
necessary to reproduce the notebook file. During repeat phase,
FLINC transparently uses the lightweight notebook container
for a notebook file in the target environment. To ensure
repeatable execution, FLINC uses the audited provenance to
determine if the notebook file has changed since being audited.
If it has not changed, the container is used; otherwise the
redirection ceases and regular execution resumes. FLINC also
uses the provenance audited during application virtualization
to export the contents of the container to other container-
like virtual environments. The export mechanism is particu-
larly needed to enable reproducibility of notebooks on non-
notebook platforms.

The current implementation of FLINC is for JupyterHub
which is the most popular notebook platform. However, the
design of FLINC is general; FLINC only relies on two prop-
erties which are generic across all notebook platforms, namely
interactive computation and a client-server architecture [9].
We have used FLINC with HydroShare [10], a cyber infras-
tructure for sharing geoscience data and models. To support
notebook-based analysis, HydroShare supports multiple com-
putational environments, such as CUAHSI JupyterHub [11]

and CyberGIS-Jupyter for Water (CJW) [12]. These environ-
ments have their own hardware configuration and maintain a
unique set of software dependencies to support analysis tasks
of their user base. HydroShare allows users to interactively run
notebooks within each environment. However, users often de-
velop workflows that must be executed across environments—
to couple with other workflows or to simply take advantage
of improved hardware or software in the other environment.
Currently, users can create and reproduce notebooks success-
fully as long as they remain in the same environment. With
FLINC, a user can easily document dependencies for a non-
notebook environment or transfer packages to be executed in
a notebook environment.

The rest of the paper is organized as follows: section II
describes types of reproducibility issues that users face when
sharing notebooks. In section III, we describe the current
model of notebook execution and sharing. Section IV describes
the FLINC system, how it extends application virtualization
to notebook platforms, and how it ensures reproducible
execution in heterogeneous environments. In section IV-D we
describe how provenance logs are used to ensure reproducible
execution and provide flexible reproducibility. We describe
the implementation and performance of FLINC in section V,
discuss its generality to other platforms and packaging solu-
tions in section VI, highlight the related work in section VII,
and conclude in section VIII with an overview and future
directions.

II. MOTIVATING USE CASE

We describe the reproducibility issues that arise when
sharing notebooks. Such issues come up regularly in cyber-
infrastructure that enable notebook-based interactive analytics
for its users.

Consider three scientists, Alice, Bob, and Charlie, who are
collaboratively engaged in analyzing maximum daily stream
flow as a function of maximum snow water equivalent. Alice,
the primary scientist, has developed a notebook that: (i)
downloads data for a region of interest, (ii) preprocesses it,
(iii) uses climate data to run a simulation model; (iv) compares
simulated streamflow data with the simulated snow water data,
and, finally (v) plots and visualizes the fit function. Figure 1
shows the steps divided into cells with some sample code.

Alice develops her notebook in Python and C; it uses
Python packages to perform preprocessing and visualization
(steps (i), (iv) and (v)) and C and Fortran2 binaries to run
simulation model and perform the comparison (steps (ii) and
(iii)). Some of these are standard packages such as Numpy
and Matplotlib, but it also includes special simulation model
packages such as PySumma, ArcGIS, GeoPandas, Rasterio,
PyRhessys, etc. which are specific to the field of hydrology.
The C packages are executed by invoking the shell with a ‘!’
from the notebook, as shown in cells 1 and 3.

To collaborate, Alice has successfully repeated her notebook
execution several times to ensure it produces the same/similar

2For efficiency, scientists often develop simulation models in C and Fortran.



results. Now, Alice wants to share her notebook with Bob and
Charlie, who also aim to repeat her workflow. The following
scenarios illustrate the reproducibility-related issues that arise
at their ends:

• Case 1: Same interface, different environments. Alice has
shared her notebook file with Bob, who also uses a notebook
platform to develop and test workflows. Although Bob can
open and edit Alice’s notebook file, he cannot execute it.
Alice’s notebook uses special Python and C dependencies
that are not present in Bob’s environment. While Bob is
aware of the dependencies (Alice has documented them for
Bob) and he could install some Python dependencies via the
notebook file interface, he does not have sufficient privileges
to upgrade his current environment with all dependencies,
especially the C dependencies.

• Case 2: Different interface, same environment. Alice has
shared her notebook file with Charlie, who does not use
a notebook platform, and prefers to work on a terminal
interface. To aid Charlie, Alice has exported her notebook
to a Python file, and also shared a Docker container which
has all the necessary and sufficient C and Python packages.
Charlie is able to successfully repeat Alice’s workflow.
However, he wishes to extend her model and compare the
execution with his own workflow that is configured outside
the container. To effectively compare, he must either import
his own workflows and data to Alice’s container or export
Alice’s shared code, data, and environment to his host
environment.

The reproducibility challenge in the first case arises because
the environment is not transported with the notebook file. In
the second case, the environment is shared, but it is not flexible
to be extended to include new simulation models and data that
are available outside the environment. A solution that accounts
for these two use cases must also account for the more general,
‘different interface, different environment’ use case.

III. NOTEBOOK MODEL OF EXECUTION AND SHARING

We describe the current model of interactive computing
within notebook platforms and sharing notebooks.

Notebook platforms operate in a client-server architecture,
as shown in Figure 2. Users edit notebook files and execute
in a read-eval-print-loop (REPL)-style via a web browser. In
REPL-style, an interactive process reads cell-worth of code
and executes it. The next read-evaluate (akin to a loop), which
is specified in the next cell, proceeds from the computational
state of the previous evaluation. Notebook files assign each
cell evaluation with a sequence number. The notebook file
preserves this sequence, and it shows a safe order for cell
re-execution, thus obtaining the same result at a later time.

On notebook platforms, the server (remote or local) main-
tains the kernel, a programming language-specific interactive
process that runs independently and maintains the state of
the notebook file computations as it progresses. For example,
Jupyter notebook platform supports the IPython kernel for

Fig. 2: A notebook platform architecture consisting of the
web-based notebook client and the notebook server. A client
connects to the server process, which interacts with one of the
available kernels. The resulting kernel process is configured
with an environment.

Python programs, Xeus Cling for C++ programs [13] and
Xeus-sql for SQL-based programs [14].

Since the kernel maintains the state of the notebook com-
putation, it is also aware of the computational environment
and any dependencies in the environment under which the
computation runs. For example, if the IPython kernel of a
Jupyter platform contains Apache Spark in its environment,
then possible notebooks that will necessarily compute and
execute are notebooks that include the Spark library and use
the specific version of Python interpreter used in the IPython
kernel. If the notebook specified in Figure 1 is executed within
this platform, it will report dependencies such as GeoPandas
and Rasterio, as missing. Typically, for executing a variety of
notebooks, the kernel is configured to run in a container or a
virtual environment (such as Anaconda) that is aware of the
dependencies and software packages required to support the
notebooks.

Since notebook files do not transport environments, users
adopt certain practices to make notebooks repeatable across
heterogeneous environments. One practice is to only use
Python dependencies in a notebook. With this restriction, users
can install Python dependencies in their user space of the
target environment. For example, in the notebook in Figure 1,
the user is allowed to install ‘rasterio’ in cell 1 within the
user space. The kernel recognizes this instruction and will
therefore successfully execute it. An alternate practice is to
create Docker containers and share the notebook file as part
of a container image.

Neither of the practices generalize to all kinds of notebooks
or fundamentally resolve the reproducibility issue. As the ex-
ample illustrates in cell 3, scientific computing notebooks often
combine Python with C, Fortran, and shell utilities to concep-
tualize a workflow and its steps. For non-Python languages,
installing dependencies in user space is often not sufficient as
the install requirements vary per computing platform. Custom
libraries are generally not available through standard package
managers, and often do not properly follow official packaging
guidelines. Further, installing all the required dependencies
with their correct versions is a manual and labor-intensive task.



Fig. 3: The workflow of notebook reproducibility using Audit and Repeat Kernels on two different computational environments.
The solid green arrows represent FLINC instructions.

IV. FLINC: LIGHTWEIGHT NOTEBOOK CONTAINERS

Figure 3 shows the FLINC architecture which creates,
repeats, and exports notebook containers in different environ-
ments. Single dashed arrows show normal execution and solid
double arrows show FLINC control and data flow. The term
notebook container is generic—it only refers to all necessary
and sufficient dependencies required by the notebook file. In
practice, it can be an encapsulated package or a namespace
isolated container; we do not distinguish between the con-
tainerization medium.

A. Creating and Repeating Notebook Containers

FLINC adapts and extends application virtualization (AV) to
the interactive client-server architecture of notebook platforms.
The key idea in application virtualization is to use the Linux
system utility strace to monitor the processes associated with
an executing program and record its interactions with the
operating system for resources. strace internally relies on the
ptrace system call to attach itself to the executing program,
which intercepts system calls to the operating system for
resources such as access to files and spawning of processes.
The accessed resources are copied and virtualized into a
container-like package [3].

AV can also be used to audit an interactive program or
audit client-server programs that include network connections,
since network connections also take place via system calls.
Unlike previous work [15], [16], we do not need to audit
both the client and the server in notebook platforms, since
the kernel performs all the computation. The client program
is the notebook file which is already shareable. Therefore, in
FLINC, we extend AV to the server-side kernel only.

In extending AV to the kernel, we distinguish between two
primary, but independent, features of a notebook platform:
supporting REPL-based interactive development, and sharing
of notebook files. We observe that sharing is distinct, and often
follows interactive development. Virtualizing the kernel during
interactive development is redundant as the user does not
wish to share a half-baked program. Therefore, to virtualize
for sharing, FLINC creates two additional kernels: an audit

kernel and a repeat kernel. Thus, for example, if the notebook
file of Figure 1 chose Python-3.4 as the kernel for interactive
development, then FLINC will create two additional kernels,
Python-3.4-audit and Python-3.4-repeat, for virtualization and
sharing.

The audit kernel is a clone of the default kernel except the
interactive programming language-specific process spawned
by the default kernel is now observed using strace and
any access for a file resource is encapsulated in a package.
By observing this language-specific process which executes
code from the notebook file, and is therefore aware of the
environment variables and any datasets or binaries accessed
by the notebook file, the audit kernel is able to encapsulate
all the necessary and sufficient dependencies.

The audit kernel creates a notebook container which con-
tains all the dependencies that a notebook file accesses. A
crucial part of this container is the connection information used
by the notebook to connect to the kernel process. However,
an important dependency missing from it is the notebook file
itself. This dependency is missing because the audit kernel
— owing to client-server architecture — is unaware of the
notebook file and only executes the code that is communicated
via socket messages. While in our current implementation,
the user can use FLINC to add the notebook file to the
container post execution, notebook files can continue to be
shared outside the container as they are routinely shared. The
absence of the notebook file in the container, however, creates
issues when repeating since files may change externally. We
address such issues in Section IV-B.

To repeat the notebook file in a new target environment,
it must execute using the dependencies from the notebook
container. In general, the notebook file by default will attempt
to make a connection to the kernel process resident in the
target environment. To reroute this connection to the notebook
container, the repeat kernel substitutes the old connection
information in the container with the new connection informa-
tion. The connection information is an environment variable
that is typically read by application virtualization methods
before creating a container. This substitution is achieved



dynamically to support interactive development. The dynamic
substitution method is also used to support any changes to
external dependencies such as data files or newer versions
of a library and accessed by notebook files. Note that such
changes are not the same as changing the notebook file, which
we describe in Section IV-B.

A notebook platform that hosts different kinds of kernels
for interactive development can use FLINC to create corre-
sponding audit kernels for each hosted kernel. Thus, if the
notebook platform hosts two kernels, then FLINC can create
two audit kernels. The platform, however, only needs to create
only one repeat kernel, which is specific to the location where
the notebook containers are stored.

B. Ensuring Reproducible Execution with FLINC

In FLINC, the audit kernel creates the notebook container
which includes all dependencies used by the notebook file,
except the notebook file itself. This absence of notebook file
in the container creates two issues when using the container
to repeat the notebook file: First, it is not possible to map
the container contents to the specific version of a notebook
file which was initially used to generate the container. Con-
sequently, given a notebook file, the container may execute,
but it is not possible to guarantee that execution is the same
as during audit or repeat. Second, the outputs of the container
are included in the notebook file and not the container. These
outputs are often necessary to compare reproducible execution.
We illustrate these issues through a use case.

Consider the notebook file N1 of Figure 1, which Al-
ice intends to share with Bob. For this, Alice has con-
tainerized N1 using the audit kernel, which now contains
all the referenced files such as python3.8, pytorch.py, re-
sent18.model, weather2016-2018.dat, and other configuration
files. She shares with Bob the container and the notebook
file N1. Bob is able to successfully repeat N1 and then
creates another version of the file N2 by modifying N1’s
threshold parameter and by adding a data transformation step
to the training dataset, as shown in Figure 4. N2 executes
without any failures but a different threshold value modifies the
generated output file, and the addition of data transformation
steps change the internal system call sequence. Since the
result of N2 is similar to that of N1, the user might think
that the notebook reproduced correctly. However, there is no
valid means to compare the result produced from the previous
execution as outputs are sent via messages. Consequently, the
container does not map its contents to the specific version
of a notebook file, which was initially used to generate that
container.

We solve this issue by auditing per cell provenance of
the application during creation of the container. The per
cell provenance is generated by differentiating between the
contents of the notebook file and its execution, and maintaining
a map between the cell code and its provenance generated
during execution.

Let N be a notebook file consisting of cells N =
[c1, c2, ..., cn], where ci represents the ith execution of the cell.

Fig. 4: The notebook N2 is the modified version of notebook
N1 in Figure 1. Bob changes the threshold and adds cell c3
containing data transformation.

Let program state psi be the state of the notebook program at
the beginning of each cell as observed by the audit kernel. The
program state at any point of execution consists of the values
of all variables and objects used by the program at that point
— intuitively, it is all the contents of the memory associated
with the program. So, for example, for the notebook N2, the
corresponding program states are [ps0, ps1, ..., ps5], in which
psi−1 denotes the program state just before cell ci executed.
The state ps0 which is just before the first cell is executed,
includes the value of the connection file and any initial input.

The audit kernel receives the code for cell ci and after
its execution, it maintains the following details about each
program state psi:

• code hash, hi, computed by hashing the code in cell i, and
• state lineage, gi, which is determined by combining three

features: (i) the predecessor cell’s lineage, (ii) the sequence
of system events Ei that are triggered by program instruc-
tions in the cell i and finally (iii) the hashes hi of the associ-
ated external data dependencies. Thus, gi = {gi−1, Ei, hi},
where Ei is the ordered set of system call events in the cell
and hi is the hash of the content accessed by the event Ei.
Initially, g0 = {}.

We emphasize that the execution of the program code in cell
i (and the code in previous cells) resulted in psi. Therefore,
psi at the end of a cell’s execution depends on its (i) initial
environment, (ii) code that is run, and (iii) external input data.
The environment is determined by the execution state at the
start of the cell. Thus, (i) and (ii) are captured via gi−1 and
Ei. Further, every external input data file is accessed via a
system call event. For each such event, we record a hash of



the file’s content in hi
3.

To establish reproducible execution, FLINC stores the de-
tails about a notebook file in the container during audit time.
During repeat, it establishes equality between states after the
execution of the cell, i.e., it determines if the cells are (i) equal
with respect to their code, and (ii) have identical state lineage
gi (note that state lineage of ith cell depends on state lineage
of previous cell). We state this formally as:

Definition 1 (State equality). Given two program versions L1

and L2, state psi in L1 is equal to state psj in L2, denoted
psi = psj , if and only if (i) hi = hj , (ii) gi = gj .

Program states do not remain equal when cell code is edited,
which changes the hash value of that cell and any subsequent
cell state. Equating state lineage depends on the system events
audited during the creation of the container. Since in FLINC,
system events are audited at the level of system calls, there
are some pre-processing steps that are necessary to establish
equality, such as accounting for partial orders, abstracting real
process identifiers. We describe these issues in Section IV-D.

C. Flexible Reproducibility with FLINC

So far we have considered notebook containers that are
created and repeated within the interactive client-server archi-
tecture of the notebook platform. In our motivating use case,
such notebook containers improve sharing and reproducibility
for users such as Bob who also use notebook platforms that
are hosted in a different environment. We now consider how
notebook containers can help users such as Charlie, with
whom Alice would also like to share the notebook container
but such users are neither operating on a notebook platform nor
are they familiar with the REPL-style notebook programming.
FLINC extends application virtualization to export the

contents of a notebook container to non-notebook isolated en-
vironments. By exporting, FLINC creates a new environment
for the user, similar to the notebook container, but into which
users can add or remove files or change existing notebook
files. Figure 3 shows the export action in FLINC.

The export is based on a log of all files, collected as part of
the auditing phase. For correctness, FLINC does not copy the
files in the log, but collects the lineage of all cells and uses the
specification of the external input data to determine the soft-
ware packages that must be installed in the new environment.
Typically, each external input data file is accessed via a system
call event. Since access is based on file paths, the system event
also knows the path of the external input data file in the source
environment. Export maps each file to its software library
package by using the path specification as software package
files are generally only accessible from within the software
package. Thus, for example, if the lineage of a cell specifies
accessing the external input file libcrypto.so.1.1, then
the software library to install is libssl as this software
library is mentioned in the file path to libcrypto.so.1.1.

Once export determines the appropriate software packages
and libraries used by the notebook application, it determines

3Such hashes are typically obtained while copying content in the container.

the version for each of them. Due to the presence of vari-
ous packaging standards and the lack of strict enforcement
of packaging guidelines, identifying the correct version of
an installed package is challenging and depends on some
programming language-specific rules. Identifying the specific
version of a software package is also not a guarantee that a
package manager will always install the specific version of
the package, which is a function of naming convention and
organization adopted by the package manager. For example
in Python, two popular packaging conventions are wheels
and eggs which respectively use the dist-info and egg-info
formats for storing the package metadata. If either of these
files/directories are present for a package, we explore the
package directory to find the version of that package. The
*-info files or directories contain a METADATA folder which
contains the version information. However, it is not required to
have that folder and we found several packages which did not
contain the folder. We then search for a file named version.py
or a similar name in the installed package directory and scan
that file to find the version of the package. Nevertheless,
for prominent programming languages such as C, C++, R,
and Fortran, FLINC follows standard conventions as a best
effort to find version numbers, though the conventions do not
guarantee identification.

After determining the packages, FLINC instantiates new
virtual environments. In particular, FLINC maintains a sep-
arate directory where software packages are copied and in-
stalled. For example, in Python this will be a virtualenv and
in C/C++, these packages are installed in a user-configured
location such as tmp or usr.

D. Processing Provenance logs for Export and Reproducible
Execution

Application virtualization captures the execution of a pro-
gram using the ptrace system call which captures the details
of each instruction executed by the program using operating
system primitives. In FLINC these events are captured on
a per cell basis in a provenance log. Each line in the log
file corresponds to a system event that took place as a result
of an instruction executed within that cell, and contains the
instruction timestamp, process identifier, instruction type, and
the operands of that instruction. This log represents the lineage
of the interactive kernel process modeled as an activity.

In export, we process the inferred provenance to determine
(i) files that are inputs to activities, (ii) files that are read by
activities, and (iii) files that are outputs. Within this classifica-
tion, we determine files that are in user directories versus files
that are in system directories. This is necessary as system files
that are read by activities determine which packages to install.
We note that the log is noisy in that it also contains information
about temporary files, outputs, and process memory execution.
We filter such files as this is execution-specific information and
not relevant for determining which packages to install.

For reproducible execution, we must establish state equality
per Definition 1. Lineage equality implies that at end of cell
i of version N1, gi is the same as that at end of cell i



Notebook Area Size w/
Output

Size w/o
Output

Primary Dependencies Description

FlowFromSnow Hydrology 105K 6.5K NumPy, Matplotlib Simple linear regression analysis on USGS stream-
flow data and climate data.

HAND Hydrology 515K 6.9K NumPy, Matplotlib, TauDEM, Ras-
terIO, GeoPandas

Calculates height above the nearest drainage
(HAND) using digital elevation model.

NatGas Data Science 250K 40K NumPy, Matplotlib, openpyxl Market analysis of natural gas by running market
simulation of 35 years based on economic indicators.

AIFinance Data Science 25K 9.1K NumPy, Matplotlib, Scikit-learn,
Keras, TensorFlow

Deep neural network to predict stock prices in the
short term using financial news data.

FashionMNIST Data Science 7.5K 7.1K NumPy, Matplotlib, Torch Vision Image classification using convolutional neural net-
works on the Fashion-MNIST dataset.

TABLE I: Characteristics of the five notebooks in the dataset used in our experiments.

of version N2. This is true if and only if the sequence of
system call events (and their parameters)—till i in N1 and
i in N2—exactly match. But if a cell, e.g., forks a child
process, which itself issues system calls, then each version’s
sequence will contain the parent calls and the child process
calls interleaved in possibly different orders. To address this
problem, we initially separate the events of all cells into PID-
specific sequences and then compare corresponding sequence
to generate the provenance. Note all time and process spe-
cific information is abstracted. Memory accesses cannot be
abstracted and we just count the number of accesses in a cell.

V. EXPERIMENTS

FLINC relies on application virtualization to create note-
book containers. We reused application virtualization as avail-
able with Sciunit [17], [4], and modified it to support transpar-
ent connection of repeat kernel with the container. The audit
and repeat kernels are wrappers over the Sciunit Python API,
and FLINC adds per cell information to the resulting logs
obtained via execution.

To conduct our experiments, we used HydroShare [10]
which is an open source platform used by geoscientists for
collaborative and reproducible research. HydroShare provides
tools for managing and publishing models and data by lever-
aging interactive development and access to cloud services. It
supports multiple computational platforms where users can de-
velop and share their scientific models. Two of these platforms
are CyberGIS Jupyter for Water (CJW) [12] and CUAHSI
JupyterHub [11]. They provide users with basic hardware
and software setup to support dependency management and
isolation through the use of one or more kernels. Users can use
the pre-existing kernels or create their own kernel in their user
space. We run our experiments on these two platforms using
notebooks which use Python, C, and Fortran dependencies.
The experiments were run on a Docker instance with memory
size of 30GB and disk size of 64GB, and running Ubuntu
20.04 on a 64 bit machine with 8 CPU cores.

Our dataset of experiments consists of five notebooks. They
are written in Python and C language and also invoke utilities
via shell commands. Each notebook corresponds to a different
use case; two from the field of hydrology and three from
data science. The hydrology notebooks perform water flow
analysis using data from different sources with the help of
standard hydrological models. In the data science notebooks,

(a) Notebook Execution Time

(b) Notebook Storage Size

Fig. 5: Comparison of execution times and storage size for the
five notebooks using each of the three methods: running the
Python file with Sciunit, running the notebook with its own
kernel, and running the notebook with Sciunit kernel.

two notebooks use machine learning algorithms to analyze
and predict market behavior and the third notebook performs
image classification using neural networks. We describe the
important characteristics of our notebooks in Table I.

We perform two different experiments with FLINC using
our dataset. First, we study the overhead incurred during note-
book execution due to application virtualization. We analyze
the execution time and storage size in both the audit and
repeat modes of notebook execution using the audit and repeat
kernel respectively. We term this the Interactive-AV method.
We compare the performance of the FLINC method against
two other methods. The first method is executing a Python
file that corresponds to the notebook, but one that uses the



(a) Notebook Execution Time (b) Notebook Repeat Time (c) Notebook Execution vs Repeat Time

Fig. 6: Comparison of average execution and repeat times using each of the three methods: running the Python file with Sciunit,
running the notebook with its own kernel, and running the notebook with Sciunit kernel.

(a) Container Export Time

(b) Average Export Time

Fig. 7: Comparison of average export times using each of the
three methods: creating virtual environment with Sciunit ex-
port, creating Docker base container, and creating the Docker
container with the required dependencies.

application virtualization in batch mode. We term this method
Batch-AV. Comparison with this method will help us learn the
overheads, if any, due to interactive computation. The second
method is the base performance of the notebook using the
original kernels (i.e, without application virtualization). We
term this method No-AV method.

Figure 5 shows the execution time and the corresponding
storage footprint generated by the three methods for each
notebook. Figure 5a shows that the execution time using
Interactive-AV for each notebook, except HAND, is less than

running the Python file of the same notebook using Batch-
AV. We speculate that this behavior is due to notebook server
optimizations for the MPI modules used by HAND and the
context switch for the MPI shell commands called from the
Python code. For each container created using Interactive-
AV, there is very little to no increase in the container size
as compared to the containers created using Batch-AV, as
shown in Figure 5b. We also compute the average time it takes
across all notebooks and across multiple (3 runs) runs of each
notebook to execute and repeat using the three approaches. We
observe that running a notebook with Interactive-AV is ∼38%
faster than running the Python file of the same notebook using
Batch-AV, and has low overhead over the base execution time
of the notebook using its own kernel, as shown by Figure 6a.
Comparing the time to repeat the notebooks, Interactive-AV
spends ∼7% less time than Batch-AV, as shown in Figure 6b.
Comparing with itself, Interactive-AV spends about 26% less
time to repeat the notebook than to execute the same notebook
during audit mode, shown by Figure 6c. With No-AV, the
repeat and execution times are exactly the same.

In our second experiment, we compute the time taken to
create the new virtual environment using the export function-
ality in FLINC. We term this method FLINC Export and we
compare it with the time required to create a corresponding
Docker container using the same set of dependencies. We term
that Docker Container. The baseline for this experiment is the
time taken to create Docker base image from Ubuntu 20.04,
termed Docker Base.

Figures 7 and 8 show the results that FLINC requires 4̃6%
less time than Docker to create a new virtual environment on
the target system and install the required dependencies. The
virtual environment created by FLINC is also lean compared
to the size of containers created by Docker. Docker containers
are, on average, 91% larger in size for all our notebooks
compared to the containerized environment created by FLINC.

In summary, executing and repeating a notebook using
FLINC adds little overhead in terms of execution time com-
pared to running the notebook itself, and uses less time
compared to running the notebook with Batch-AV method.
Compared to Docker containers, FLINC takes almost half the



time to create a new virtual environment and about half the
storage footprint to store the virtual environment.

(a) Container Export Size

(b) Average Export Size

Fig. 8: Comparison of average sizes using each of the three
methods: creating virtual environment with Sciunit export, cre-
ating Docker base container, and creating the Docker container
with the required dependencies.

VI. DISCUSSION

We discuss the generality of FLINC while encapsulating
and sharing dependencies. FLINC is an open-source sys-
tem [18]. Currently, we do not focus on the medium of
containerization or the format of the resulting container, which
is beyond the scope of this paper. The objective in FLINC
is to automatically determine the dependencies and provide
a sandbox instead of manually creating a package and then
sandboxing it. If the container is a package then one of the
emerging format such as Flatpak [19] or NEXTSTEP/MacOS
bundles [20] can be used. If the container has namespace
isolation, then Docker or Singularity images can be used.
FLINC currently depends on ptrace, a process tracing utility

that is only available on Linux platforms. While this restricts
FLINC to Linux, the fundamental concepts in FLINC can
also be extended to other operating systems through the use of
event tracing systems specific to them. For example, as shown
previously [21] the Process Monitor (procmon) application
on Microsoft Windows and Mac OS X kernel’s auditing of
system calls with OpenBSM reporter collects the same fidelity
of provenance and content details as ptrace on Linux. Thus

the fundamental concepts of FLINC can be applied to other
operating systems as well.

VII. RELATED WORK

Notebooks are increasingly becoming part of cyberinfras-
tructure for scientific computing [22], [10]. Policies and
standards with respect to reproducible notebooks [23] are
also emerging. Several current efforts aim to determine the
most appropriate notebook platform for scientific computing
and data exploration. [9] provides an excellent survey of
about 60 different notebook platforms. They state REPL-
style interactive computation and client-server architecture as
two distinctive properties of notebook platforms. We have
developed FLINC keeping these two properties as invariant.

There are several notebook extensions that improve the
reproducibility of notebooks during interactive development.
Nodebook [24] is a plugin for Jupyter that checkpoints note-
book state in between cells to force in-order cell evaluation;
Dataflow notebooks [25] extend Jupyter with immutable
identifiers for cells and the capability to reference the results
of a cell by its identifier. Both of these are specialized
notebook clients that aim to impose a strict order of notebook
execution and capture their provenance. This order is important
during repeated interactive development. Use of FLINC is post
interactive development for collaborative analytics.

The issue of reproducing notebooks in different environ-
ments was already recognized by [9]. [26] addresses this
problem by context-aware migration of a notebook cell for
execution on another platform. This is achieved through a
JupyterLab extension which analyzes the execution of each
cell and uses a hand-crafted knowledge base to decide the
environment in which to perform computation. FLINC focuses
on the reproducibility of the entire notebook with minimal user
intervention.

Several methods describe the process and specifications
to capture programs executions and convert them into self-
contained environments. They include methods such as
PRUNE [27] and TOSCA [28] which require users to explic-
itly define all the code, data, and dependencies with their sys-
tem and users often need to learn new standards and languages
to use them. In our work, we use application virtualization
which is a generic approach to build container-like packages
without modifying applications, and predominantly uses the
ptrace system call to automatically create a container-like
package [3], [29]. Some prominent tools that use AV are
Sciunit [4], [30], Reprozip [31], and Care [32].As this paper
shows, AV must be extended to apply to notebook platforms.
Further as we show in this paper, for notebooks, the redirection
model must also be extended when repeating within notebook
platforms due to the client-server architecture. The export
method is similar to the copying of dependencies used in [33],
[34], but we make it further flexible by bypassing calls to files
that are not within the container.



VIII. CONCLUSION

Notebooks are increasingly becoming popular in scien-
tific computing, and are adopted for programming analysis,
modeling, and visualization tasks. Reproducing notebooks is
critical as target environment continues to evolve, especially in
collaborative analytics. In this paper, we have highlighted that
notebook files do not transport their underlying environments
despite being easy to share. To address this limitation, we
have presented FLINC a system that supports interactive
and flexible reproducibility of notebooks. FLINC adapts and
extends application virtualization (AV), an already popular
method for addressing computational reproducibility, to note-
books. FLINC monitors notebook execution and captures
them to create isolated notebook containers. It extends AV
to accept new network connections from a notebook file and
redirect them to the notebook container. We show how FLINC
guarantees reproducibility despite new connections in target
environments, and also exports notebook containers. Exper-
iments show that FLINC provides efficient reproducibility
of notebooks and takes significantly less time and space to
execute and repeat notebook as compared to Docker containers
for the same notebooks. In the future we plan to generalize
FLINC to multiple OSes and make FLINC available for high-
performance computing workflows.
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