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Abstract—In column stores, which ingest large amounts of data
into multiple column groups, query performance deteriorates.
Commercial column stores use log-structured merge (LSM) tree
on projections to ingest data rapidly. LSM improves ingestion
performance, but in column stores the sort-merge phase is I/O-
intensive, which slows concurrent queries and reduces overall
throughput. In this paper, we aim to reduce the sorting and
merging cost that arise when data is ingested in column stores.
We present LDI, a learned distribution index for column stores.
LDI learns a frequency-based data distribution and constructs a
bucket worth of data based on the learned distribution. Filled
buckets that conform to the distribution are written out to
disk; unfilled buckets are retained to achieve the desired level
of sortedness, thus avoiding the expensive sort-merge phase. We
present an algorithm to learn and adapt to distributions, and a
robust implementation that takes advantage of disk parallelism.
We compare LDI with LSM and production columnar stores
using real and synthetic datasets.

I. INTRODUCTION

Column-oriented databases are a dominant backend DBM-
Ses for supporting business decision-making processes [1], [2].
Column-stores, unlike their row-store counterparts, store entire
columns contiguously, often in compressed form. Applications
using column-oriented databases typically coalesce columns
into groups. Using column groups significantly reduces the
amount of data to be read, achieving high read performance
for analytic (range-query) workloads in which most queries
reference a column group.

In the era of big data, applications also ingest high volume
data, often arriving at high velocity. Log-structured merge tree
(LSM-tree) logs incoming data in a buffer and periodically
sort-merges the data [3], [4] into larger sorted runs. Typically
used in wide-column NoSQL databases [5]–[8], LSM-trees are
increasingly available in column-store databases for fast writes
and high throughput, such as Vertica [9], [10]. Each group
of columns in a column-store requires storage maintenance,
thus column-stores have a greater need for a write-optimized
index than row-stores. However, using an LSM index structure,
which itself has a significant write amplification1 in a column-
store database can also reduce query performance.

Current methods optimize this phase by adding summary
structures within the buffer [11], improving strategies for
merge [12], [13], and by measuring overlaps between buffer
and on-disk data [14]. In every proposed approach, however,
the sort-merge phase sorts all key values at periodic time
intervals. We show, analytically and experimentally, that this
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1Write amplification is the ratio of total write I/O performed by the DBMS

to the total data in the DBMS. High write amplification increases the loading
cost on storage devices.

complete sorting of keys causes a large fraction of the I/O
cost in an LSM-tree. In column stores this increase in I/O
during inserts reduces concurrent query performance, but,
more importantly, this I/O due to sorting is redundant for
answering analytical workloads. Our strategy eliminates the
sort-merge phase of an LSM-tree and sorts the incoming data
approximately instead. The advantage of approximate sorting
is that unlike LSM we do not need to wait for periodic intervals
to merge and can write out incoming data as fast as it arrives;
the disadvantage is that we must know in advance if the data
being written out is sufficiently sorted. A similar approach has
been studied by using Min-Max windows [15] to bucketize
incoming data. However, this method cannot learn different
types of incoming data distribution, and thus it’s still suffering
low query performance.

In this paper, we present LDI, a low cost index for column
stores, which logs data based on a learned distribution of
data. If the incoming data conforms to the learned distribution,
and the distribution remains stable, no further sorting will be
needed for logged disk blocks. If the incoming data does not
conform to the distribution, disk blocks will be approximately
sorted and will need to be reorganized later. We show that for
real datasets, such strategy localizes the reorganization instead
of incurrcing the full cost of a sort-merge as in an LSM-tree.

LDI constructs a distribution similar to a dynamic histogram
where it accumulates incoming data distribution every time
window t. We present a learning algorithm that decides when
to adjust the intervals based on incoming data, and show how
interval counts can be maintained incrementally. LDI has the
advantage of writing disk blocks continuously as data arrives.
We present an I/O handler that takes advantage of in-built
parallelism in HDD and SSD storage devices to support such
a strategy. Finally, we present an extensive set of experimental
results comparing LDI with LSM and commercial column
databases, using both real and synthetic datasets.

The rest of this paper is organized as follows. We present
an example in Section II. We introduce learned distribution
index structure (LDI) in Section III, and its implementation
details in Section IV. We show the experiments in Section V,
and discuss about the related work in Section VI.

II. AN EXAMPLE: THE BEHAVIOR OF LSM AND LDI

We illustrate the difference between LSM-Tree and LDI
approach through an example in this section. There are two
types of LSM trees, leveled (proactive merging) and tiered
(delayed merging) [12], [16]. We select leveled LSM tree
in this example; tiered LSM tree example is presented in
Appendix VIII-A.



Fig. 1: Sample data D to insert.

Figure 1 lists a sequence D of 32 incoming tuples (a tuple
consists of a key and data, although only the key is shown) and
the order in which they arrive. LSM tree periodically merges
sorted runs of tuples into larger sorted runs either in the same
level or in the higher level of the structure. Figure 2a shows
the state of leveled LSM tree just before and just after a merge.
The data arrives at L0, or the in-memory buffer with a size
B = 4 (4 tuples). LSM is configured with a level ratio of
T = 3 (representing the maximum size ratio between levels
in LSM). If a merged level is full, LSM merges data runs at
a higher level.

(a) Inserting the sample data D using leveled LSM trees.

(b) Inserting the sample data D using LDI.
Fig. 2: The behavior of LSM and LDI.

Figure 2a illustrates five merging steps performed by the
LSM approach. The first four tuples (9, 10, 3, 18) are already
sorted in memory and written to disk at L1 before step 1.
In step 1, the sorted buffer (1, 13, 20, 24) is merged with L1
sorted run (3, 9, 10, 18) to write out the sorted sequence of
eight tuples (1, 3, 9, 10, 13, 18, 20, 24) at L1. A step can trigger
multiple consecutive merges: for example, in step 4, a merge
between levels L0 and L1 leads to a full L1 level and is thus

followed by a merge between levels L1 and L2. The ratio of
data between levels is always maintained to be 3.

When data is mostly sorted, LSM tree can choose to append
sorted runs instead of merging them. For example, in step 5, a
merge between levels L0 and L1 can be replaced by appending
L0 and L1 instead. In this case, skipping the merge causes
a small reduction in data sortedness (only tuple 5 is out of
order). However, the likelihood of such near-sorted alignment
depends on the distribution of the data. Although LSM can
benefit from such distribution, it is not distribution-aware.

Intuitively, LDI designs the buffering process based on data
distribution to ensure that data runs are mostly sorted and can
be appended without a merging cost. Figure 2b illustrates LDI
behavior for the data in Figure 1 with the same main buffer
capacity B = 4. Leaf ranges are skewed based on the input
distribution. Each leaf bucket contains pointers to tuples stored
in the buffer. For example in the first row buffer contains tuples
(9, 10, 3, 8) and the interval [3 ÷ 6] points to tuple 3, while
[13÷ 18] interval contains pointers for tuples 9 and 10.

The maximum number of pointers in a leaf interval is n (in
this example n = 2, and a bucket can hold 2 tuples). Every
time an interval fills up, a new bucket is written to disk and
cleared from the buffer. For instance, at step 1, the leaf interval
[7÷12] has two pointers (9 and 10). As a result, a new bucket
[9, 10] is created and written to disk. Tuples 9 and 10 are
removed from the buffer and from the leaf storage. The last
row in Figure 2b summarizes the buckets written during the
ingestion of input data.

Unlike LSM-Tree, LDI runs do not require a merge as the
distribution already writes nearly-sorted buckets. Table I shows
the insertion cost of LSM-Tree and LDI in number of merges
and the number of I/O operations. Leveled-LSM requires 6
merges with 36 writes and 20 reads; Tiered-LSM requires 2
merges with 28 writes and 8 reads. Meanwhile, LDI does not
require any merges. The number of writes is equal to the total
number of written buckets (32/2 = 16 buckets). It’s worth
to emphasize that both LSM-Tree and LDI use their data
structures for handling data ingestion and organizing data on
disk. The data layout and its indexing structure will determine
the performance of query.

TABLE I: Merge cost with different methods

Leveled-LSM Tiered-LSM LDI

#of merges 6 2 0
#of I/Os (Writes) 36 I/O 28 I/O 16 I/O
#of I/Os (Reads) 20 I/O 16 I/O 0 I/O

Next, we examine read query performance using key-range
queries. Without the loss of generality, Q1, Q2 and Q3 have
key-ranges [10, 12], [19, 20] and [14, 20], respectively. Table II
presents the number of I/Os needed for each query. The data



layout of Tiered-LSM requires more I/O than both those of
Leveled-LSM and LDI in all three queries. Leveled-LSM
exhibits the best performance, but LDI query performance is
equivalent for Q1 and Q3 and is only one I/O higher than
Leveled-LSM for Q2.

TABLE II: Query cost with respect to the data layouts of
different methods

Range Query Leveled-LSM Tiered-LSM LDI

Q1 : [19, 20] 2 I/O 2 I/O 2 I/O
Q2 : [11, 12] 2 I/O 3 I/O 3 I/O
Q3 : [14, 20] 4 I/O 5 I/O 4 I/O

LDI data buckets can overlap because data is not strictly
sorted and does not use merges. Therefore, some queries will
read extraneous data at a higher cost. Ultimately, the goal of
LDI design is to minimize these extra penalties by achieving
good bucket compactness.

In the Appendix VIII-B, we experimentally detail the merge
costs of LSM and LDI on columnar databases.

III. LEARNED DISTRIBUTION INDEX

The basic idea of LDI is to use a fixed amount of training
data to learn a given distribution, and then continuously update
the learned distribution as new data comes in.

LDI is conservative in updating its distribution, since a
change in the distribution will affect query costs. In order
to learn, it maintains two distributions: a global distribution
based on which buckets are created, and a local distribution,
which reflects the state of incoming data. Local distribution
may change more rapidly but bucket creation is determined
by the global distribution. Only when sufficient evidence about
the local distribution is collected, and a drift is detected, LDI
updates the global distribution. In LDI, a normalized frequency
is used to create a distribution and is thus similar to V-optimal
histograms but unlike dynamic V-optimal histograms [17]
which keep tuning configurable, LDI decides when to tune.

We now describe in detail how the distribution is initialized
and updated based on drifts. We then present the data mainte-
nance in LDI that keeps data compacted in order to improve
the query performance.

A. Initializing a distribution

LDI distribution is represented by an array of n contiguous
intervals {[bi, bi+1)}, where bi and bi+1 are interval bound-
aries. For each interval, we maintain two values: a normalized
frequency, denoted dis and a count of values denoted load.

Interval boundaries and frequency counts are initialized by
inserting a fixed amount of data into a k-ary B+-tree, and using
the min/max key values in the leaf nodes as interval boundaries
to determine how many values fall into these leaf nodes. To
reduce the cost of tree traversal, we prefer to create a wide
B+-tree by using a high value of k (e.g., k = 128).

B. Updating a distribution

Table III summarizes the variables maintained by LDI.
Interval boundaries and frequency counts are updated as new
data arrives. Local (denoted by L) and Current (denoted
by C) have no value initially (distribution or load); LDI
determines the frequency counts using a time window t with
size data entries. For each window t, we record the normalized
frequency and the count of keys falling into each interval
in C. Once time window t is ended, the recorded normalized
frequency C.disi, and the current total count C.loadi are
updated. These current quantities (C.disi and C.loadi) are
then accumulated into local normalized frequency (denoted
by L.disi) and local count (denoted by L.loadi).

We define the distribution drift(L.disi, G.disi) as the ratio
between the weighted estimate of the global normalized fre-
quency and the local normalized frequency for the ith interval.
Intuitively, a ratio of 1 represents a data distribution that has
not changed and deviation from 1 represents an increase or
decrease in the data seen for this interval. If the drift is positive,
more data is arriving, and we might be creating buckets that
are too narrow; if the drift is negative, less data is arriving,
and we might be creating buckets that are too wide.

drift(i) =
wLi ∗ L.disi + wGi ∗G.disi

G.disi
(1)

TABLE III: Notation used in this paper

Parameter Description
G.bi Global boundary at interval ith

G.disi Global normalized frequency at interval ith

G.loadi Global count at interval ith

L.bi Local boundary at interval ith

L.disi Local normalized frequency at interval ith

L.loadi Local count at interval ith

C.bi Current boundary at interval ith

C.disi Current normalized frequency at interval ith

C.loadi Current count at interval ith
drift(L.disi, G.disi) The change in the distribution (local vs global)

at interval ith
Φmax The upper boundary (split) threshold
Φmin The lower boundary (merge) threshold
size The total number of data tuples (data entries)

in a time window
counti The number of data tuples (entries) falling to

the interval ith in a time window

The weights for local and global normalized frequency are
based on the ratio between the amount of data observed so
far. More data represents stronger evidence for L or G:

wLi =
L.loadi

L.loadi +G.loadi
(2)

wGi
=

G.loadi
L.loadi +G.loadi

(3)

where L.loadi, L.disi, G.loadd and L.disi are described in
Table III. The relative distribution drift(i) in Equation 1 is used
to determine whether the interval ranges should be modified.
While drift remains near 1, no change is needed; but as the



Fig. 3: Online interval tuning Algorithm applied on the interval [7÷ 12] of LDI shown in Figure 2b.

value goes above Φmax or below Φmin, the intervals are split
or merged accordingly:

Action(i) =


drift(i) ≥ Φmax, Split.
Φmax > drift(i) > Φmin, Skip.
drift(i) ≤ Φmin, Merge.

(4)

In practice, our current thresholds were set as Φmax = 2
and Φmin = 0.3. In Algorithm 1, after each time window t,
once the counti data tuples are accumulated to local L, the
drift for interval i will be calculated to determine whether a
split or a merge is needed (Phase2 – lines [11–21]). If a
split is required at an interval i (lines [13–16]), the current
data distribution in local L at this position will be added to
the global distribution G before a split is performed (the split
happens in the global level G, i.e. the list of boundaries G.bi
are adjusted). Similarly, if a merge is required at an interval
i (lines [18–21]), the current data distribution in local L at
this position will be incorporated into the global distribution
G (lines [18–20]), merging the current interval with its left or
its right neighbor. Finally, if there is any change in the global
G, then we propagate this change to the current distribution
C (lines [22–23]), to make sure the intervals C.bi, L.bi, G.bi
are same.

Figure 3 shows an example of how distributions are updated
and applied to the interval boundary [7÷12] (the third interval
i = 3) of LDI shown in Figure 2b. In this example, we
consider three time windows t = 1, t = 2 and t = 3,
where each window has 16 data entries. The sample data
is shown in Figure 1. Figure 3(a) shows the behavior of
the algorithm when receiving the first 16 data entries. Since
in the first 16 data entries (see Figure 1), there are 4 keys
falling into [7, 13) range, the current normalized frequency is
C.dis3 = 4/16 = 25% and the current count C.load3 = 4.
These current distribution and load will be accumulated to the
local L. Next, the distribution drift(L.dis3, G.dis3) = 1.67.
Since this drift value does not go above Φmax or below
Φmin, there is no split or merge after this time window.

In the next time window t = 2 (see Figure 3), there
are 5 keys falling into [7, 13). Thus, the current normal-

ized frequency is C.dis3 = 5/16 = 31.25% and work-
load C.load3 = 5 will be accumulated with the local
(new values: L.dis3 = 28.47% and L.load3 = 9). Since
drift(L.dis3, G.dis3) = 2.19 is higher than Φmax = 2,
there will be a split in this interval 3 after this time window.
Figure 3(c) shows the new intervals after the split and the new
values in those intervals when new data arrives.

C. LDI Maintenance

LDI writes buckets based on the global distribution, but
sometimes may need to perform some in-memory merging to
write out buckets. Going back to our example in Figure 2b,
step 7, data buffer (1, 29, 8, 4) is full but none of the leaf
ranges are full. As a result, LDI has to combine data from two
sibling leaves with intervals [1÷2] and [3÷6] to write a bucket
[1, 4]. This bucket is called non-compacted because it contains
a range of data that is larger than a its leaf range. Similarly, in
step 12, a non-compacted bucket [12, 16] is created that will
have to be rebuilt. In both these situations the data that arrived
fell into each respective interval, but there was not enough data
to create a compacted bucket. Based on pigeon-hole principle
such a situation is unavoidable even if the global distribution is
perfectly learned. In these cases, non-compacted bucket will
be created and will need to be compacted by a background
data maintenance process, which reads and re-writes buckets.

Merging: As defined in [18], the compactness of an approx-
imately sorted dataset is defined through the average relative
bucket range factor (ARB):

ARB =

∑K
i=1

∣∣Range (Bucketsortedi

)∣∣∑K
i=1

∣∣Range (BucketLDI
i

)∣∣ (5)

ARB is the ratio of the sum of the range between minimum
and maximum values in a bucket for perfectly sorted data
versus the range between minimum and maximum values in
the LDI bucket. Range is defined as the difference between
largest and smallest value in a bucket. Data is considered in
bucket units; if approximately sorted data does not have any
values in a wrong bucket, ARB will have a perfect score of 1.

LDI performs a sort-merge operation by combining all non-
compacted buckets, in order to approximate an improved ARB



Algorithm 1: Dynamic-interval tuning process

1 Interval-Tuning ():
input : Global partitioning G, Local distribution O,

Current distribution C
output: New G, O

2 G = {G.bi, G.disi, G.loadi}; //Global intervals
3 L = {L.bi, L.disi, L.loadi}; //Local intervals
4 C = {C.bi, C.disi, C.loadi}; //Current intervals
5 Phase 1: Merge current distribution to local intervals
6 foreach ({L.disi, L.loadi}, {C.disi, C.loadi}) in

{L,C} do
7 L.disi = (L.disi * L.loadi +
8 C.disi * C.loadi) / (L.loadi + C.loadi);
9 L.loadi += C.loadi;

10 Phase 2: Tune the global, intervals if necessary
11 foreach ({L.disi, L.loadi}, {G.disi, G.loadi}) in

{L,G} do
12 if (drift(i) ≥ Φmax) then
13 G.disi = (G.disi * G.loadi +
14 L.disi * L.loadi) / (G.loadi + L.loadi);
15 G.loadi += L.loadi; L.loadi = 0; L.disi = 0;
16 Split current interval i;

17 else if (drift(i) ≤ Φmin) then
18 G.disi = (G.disi * G.loadi +
19 L.disi * L.loadi) / (G.loadi + L.loadi);
20 G.loadi += L.loadi; L.loadi = 0; L.disi = 0;
21 Merge the current interval i to the left or to

the right;

22 if there is a split or a merge in G then
23 C = G;

measure. In LDI, a bucket is considered to be non-compacted
if it has at least one data key out of the key range where
this bucket is indexed (i.e., the bucket had to be merged with
another leaf interval). For instance, as shown in the Figure 2b,
buckets [1-4] and [12-16] are non-compacted bucket as the
data key 4 and 16 are out off the key ranges (i.e., [1-2] and
[7-12]) where those buckets are indexed.

IV. LDI ARCHITECTURE

Figure 4 gives an overview architecture of LDI: (i) Data-
clustering component generates buckets with data distribution
as discussed in Section III; (ii) Bucket indexing indexes the
buckets using interval B-Tree (Section IV-A; and (iii) I/O
handler (Section IV-B). LDI receives data tuples and generates
buckets. The created buckets are then written to disk by
I/O handler, while buckets metadata are indexed in Bucket
indexing.

A. Bucket indexing for Query Performance

Buckets generated by LDI are stored on disk and indexed
by interval B-Trees [19] (i.e., IB-Trees), in order to further im-
prove query performance. In LSM, Bloom filters are typically

data 
tuples

buckets

IB-Tree

(a) Decompose data into 
projection tuples

(b) Organize data in 
IB+-Trees

(c) Flush full leaves 
to buffers

(d) Write buckets to disks and index them with IB-Trees.
Build BF Patterns and index them with BF-Trees

Disk

Multi-threading…

LDI I/O handler

queries

Insert bucket 
key range:
[min, max]

lookup

data 
tuples

buckets

IB-Tree

Disk

Min-Max 
Window Insert bucket key range:

[min, max]

Fig. 4: The overview architecture of LDI.

used to improve query performance. Since analytic workloads
are predominantly range queries, an IB-Tree is more suitable.
Incoming buckets are indexed using their key ranges. The
range of values [L,H] of a node is the key range of the low
key boundary of buckets in its sub-tree. Meanwhile, Maxi of
a node indicates the highest value of the high key boundary
of buckets in its sub-tree. Using this max value bounds the
search.

root

…

Max2…

Leaf 

nodes

Non-Leaf 

nodes

[L1, H1] [L2, H2] … [Lk, Hk]

Max1 Max2 Maxk

BucketPointer BucketPointer … BucketPointer
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k, H2
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1 Max2

2 Max2
k

BucketPointer BucketPointer … BucketPointer

Disks

(e.g., HDD, SSD)

…

Fig. 5: The data structure of IB-Tree.

Figure 5 illustrates the adaptation of IB-Tree applied in our
context. The size of node is a multiple of page size (i.e., k ∗
4KB) so that all nodes in IB-Tree can be efficiently stored
on disk. IB-Tree keeps its data (i.e., BucketPointer)2 in all
types of nodes, including both leaf or non-leaf nodes.

There are a few of advantages of using IB-Tree. First,
IB-Tree indexes at the granularity of a bucket (i.e., a group
of tuples), so the index size is reduced based on the average
number of tuples in a bucket. Second, it reduces the time to
search for a bucket from O(N) to O(logN) [19], [20] (similar
to the search cost in B-Tree). Third, IB-Tree is designed for
either full or partial loading in memory.

B. I/O handler

In most computer system, the storage layer is the major
performance bottleneck; more so with large-scale database
systems. While reducing amount of I/O should improve query
performance, the strategy for performing I/O operations also
plays crucial role in determining query execution time. Current
solutions optimize I/O operations by favoring large granularity
I/O and reducing random I/O [21]–[23]. The I/O handler

2BucketPointer points to physical bucket stored on disk (composed of
fileID and offset).



is designed to further improve I/O through: (i) avoiding
interference between concurrent read and write operations; (ii)
supporting concurrent transactions; and (iii) exploiting internal
parallelism of storage devices. We detail those techniques in
Appendix VIII-C.

V. EVALUATION

Purpose: Our experiments 1) demonstrate the significant
improvement in data loading performance for LDI index,
2) compare read query performance for LDI index to current
state-of-the-art approaches, and 3) present the benefits of
parallelism achieved by our I/O handler in LDI.
Setup: In our evaluation, we implemented two versions of
basic column-oriented DBMS with LDI in C++: one without
disk-level parallelism (LDI) and other with our I/O handler
parallelism optimization (LDI Par). We also implemented
a basic column-oriented DBMS (Sorted Col), in which all
projections are sorted on the indexed key. Queries executed in
Sorted Col are expected to have the best possible performance
as columns are fully sorted. We also deployed a column-
store with LSM-Tree-like indexing (Col LSM-like) that used
the same datasets as well as Min-Max approach [15]. The
comparison with other variations of LSM-Tree such as [12],
[13] is a part of our future work.
Systems: Experiments were conducted on a desktop computer
with an Intel Core i7-3770 3.4Ghz (8 cores), 8GB of main
memory, 1 TB SATA HDD and 256 GB Intel SATA SSD
600p, and Ubuntu 16.04 64-bit operating system.

We reported our experiment on SSD in this section, the
same experiments on HDD were also conducted and reported
in Appendix Sections VIII-D, VIII-E and VIII-F.

TABLE IV: NYC dataset sizes.

Table T A T B T C T D T E
Records (M) 1.5 15 30 59 148
Size (GB) 0.3 3 6 11.8 29.6

Dataset & Queries: Experiments used real-world data from
the New York City Taxi (NYC) dataset [24]. Table IV sum-
marizes the five table sizes used. Three different projections
were deployed for each indexing approach: Projection1 (29
columns, indexed on ID), Projection2 (4 columns, indexed
on trip distance) and Projection3 (5 columns, indexed on
total amount).

Table V summarizes the set of read queries used to
measure performance. Key range refers to a delta in the
indexed attribute value, i.e., range between X and X+ <
keyrange >, where X refers to the value of the indexed
attribute (trip distance, ID, or total amount). Selectivity
refers to the ratio between the number of query result tuples
to the total database tuples.
A. Loading Costs

Figure 6 summarizes the loading costs for the three ap-
proaches on SSD (Min-Max’s loading cost is similar to LDI).
To provide a baseline reference, we also include WriteMAX ,
the maximum sequential write speed for each storage device.
The Sorted runtimes include the load time plus a one-time

TABLE V: Query Range and Selectivity.

Range Query Q1 Q2 Q3 Q4 Q5
Key Range 0.003 0.005 0.020 0.030 0.055
Selectivity 0.003 0.006 0.015 0.026 0.050
Range Query Q6 Q7 Q8 Q9 Q10
Key Range 0.065 0.075 0.085 0.100 0.110
Selectivity 0.067 0.083 0.100 0.130 0.150

clustering operation performed at the end of a bulk-load.
Similarly, the Col LSM-like runtimes include the costs for
reorganizing data in all projections. It’s worth emphasizing
that the results are for one-time bulk-load ingestion, whereas
continuous data ingestion or incremental data loading will
likely lead to additional clustering/optimization overheads in
both Sorted and Col LSM-like. Meanwhile, LDI is an on-
line process that does not incur any additional overheads for
incremental data loading.

We observed that the load times for LDI were within a
factor of three compared to the disk capacity WriteMAX . LDI
significantly improved data load time for the column-oriented
DBMS on an SSD; it was, on average, 21X times faster than
Sorted across all tables (note that the load times are shown on a
logarithmic scale). The advantage of LDI comes from avoiding
data maintenance and clustering overhead during ingestion.
Sorted includes the loading time and a cost of clustering at the
end of bulk-loading. Similarly, loading runtimes in Col LSM-
like include merge costs. Moreover, incremental loading of
data (versus a one-time bulk load) can only degrade the
performance of both Sorted and Col LSM-like. In contrast,
LDI load cost is always based on the amount of data it ingests.

Fig. 6: Loading runtimes on SSD with different tables.

B. Read Query Performance
LDI eliminates clustering reorganization (sort and merge)

costs associated with data loading by creating approximately
clustered buckets. Since LDI reads queried data in approxi-
mately sorted buckets, it may read extraneous tuples stored in
the buckets that contain some of the data in queried range. As
a result, LDI queries may incur a small penalty in comparison
to approaches that strictly cluster data. In this evaluation, we
compare LDI to the best possible query performance of Sorted.
We ran queries against two different projections: Projection1
(29 columns) and Projection2 (4 columns) with all competi-
tors: LDI, LDI par (with parallelism optimization), Sorted,



Fig. 7: Runtimes of different queries on SSD at different projections: (a) Runtimes on Projection1 with SSD; and (b) Runtimes
on Projection2 with SSD.

Col LSM-like and Min-Max. Query runtimes for SSD are
shown in Figure 7.

The first observation is that Sorted typically has the fastest
query runtimes in queries on SSD (i.e., Figure 7(a) and
7(b)) among other competitors except LDI. This is because
data is perfectly sorted in Sorted. LDI par has better query
performance than Sorted on all evaluated queries and on SSD
(see Figure 7 (a) and (b)). LDI par can outperform Sorted
by leveraging our parallelism optimization, which is most
effective on larger queries (that access the most data) and on
SSD.

As expected, the query runtimes of LDI (without paral-
lelism) are slightly slower than those of Sorted because: 1) LDI
data is approximately sorted in buckets, causing it to read some
extraneous data that is not required by the query, and 2) read
operations are done in bucket granularity instead of sequential
reads in Sorted. However, on SSD, when the performance
of random I/O and sequential I/O are almost similar, LDI
performance is better than Sorted with large queries (see
Figure 7 (b)). This comes from our I/O handler in LDI that op-
timizes the query performance by grouping buckets which are
physically stored in close proximity (see Appendix VIII-C). In
other words, our I/O handler combines many ’neighbor’ I/Os
into a single big I/O, leading to accessing to more data, but
reducing the data accessing time.

Col LSM-like and Min-Max shows the slowest query per-
formance among other evaluated approaches, for all tested
queries. It takes a long time to query Projection1 (see
Figure 7(a)). For better readability we only show the runtimes
of queries Q1 and Q2, as other queries were much slower.
Col LSM-like and Min-Max runtimes on Projection2 are
faster (see Figure 7(b)), but still slower than other methods.

C. Effectiveness of concurrence and parallel processing

The experiments in this section aim to evaluate the effec-
tiveness of concurrence and parallel processing in read queries.
In order to show how LDI behaves in presence of concurrence
requests, by de-duplicating overlapping data and by leveraging
concurrency, we created a set of 40 queries with selectivity
ranging from 0.2% to 5%. We then run these queries, varying
the number of threads from 1 to 32. Figure 8 presents the

Fig. 8: Runtime improvements on HDD and SSD.

runtime improvements (percentage improvement on y-axis) for
both HDD and SSD as the number of threads increases (x-
axis).

As Figure 8 shows, while improvement increases (the run-
time decreases) as the number of threads increases, the best
number of threads in HDD is 8 or 16 threads (improvement
of 9% or 11%), while on SSD the best number of threads
is 16 or 32 (improvement of 53%). The results confirm that
1) concurrent processing improves query performance both in
HDD and in SSD, and 2) SSD has a greater capability for
exploiting concurrence compared to HDD.

We also observe that increasing the number of threads even-
tually becomes counterproductive. For example, in our experi-
ments 32 threads on HDD and 64 threads on SSD lead to query
runtime deterioration. In fact, the effectiveness of concurrence
comes from parallelism and de-duplication. However when
as the number of threads increases, the overheads of multi-
threading will negate the benefits of concurrence. Furthermore,
a large number of threads may require a significant amount of
memory to store temporary query results.

In order to examine the impact of the number of threads in
reading/writing from/to storage devices, we vary the number
of threads that are allowed to read/write at the same time using
queries from Table V. Figure 9 shows the runtimes of different
queries as we vary the number of parallel threads (x-axis shows
the number of threads, y-axis shows the execution time in
seconds).

Figure 9 shows the results for Q6 through Q10. As shown,
the best number of threads on SSD is 16 threads. Continuing



Fig. 9: Parallel on SSD.

to increase the number of threads offers very little benefit or
potentially begins to slow queries down due to the overhead
costs of multi-threading.

VI. RELATED WORK

Columnar Stores: The ideas of column-oriented hierarchical
have been widely applied in both academic [9], [25] and
commercial [10], [26]–[28]. MonetDB [25] is an in-memory
columnar relational DBMS that leverages the large main mem-
ories of modern computer systems in query processing, while
the database is persistently stored on disk, showing outstanding
performance. However, similar to other in-memory column-
oriented DBMSes such as SAP HANA [29], Peloton [30],
DB2 BLU [27] or Microsoft SQL Server Column stores [28].
Recently, in the same context as MonetDB, Vectorwise [26]
was proposed, aiming at vectorizing execution to operate on
vector of data instead of separate tuples and further improving
in storage model. However, the applications of those methods
are limited due to many reasons: (i) require huge amount of
main memory; and (ii) the volatility of main memory.

C-Store [9] and its recent commercial extension (i.e., Ver-
tica [10]) are on-disk columnar databases that apply different
sort orders on each projections (i.e., groups of columns), differ-
ent compression method for each column in order to improve
the compression ratio, fully support aggregation operations on
compressed data. However, similar to other column stores,
incremental data loading may require heavy data clustering/re-
organization processes. Even though, these processes can be
run as background processes in Vertica, it negatively impacts
DBMS performance.
Log Structured Merge Trees While many DBMSes including
columnar stores suffer from poor write performance, the log-
structure merge tree (LSM-Tree) [3], [4] is a common solution
for this problem. Other enhanced variations of LSM-Tree
used in Monkey [12] and Dostoevsky [13] to further improve
the DBMS performance by using BloomFilter and changing
merging policies. However, the main drawback of LSM-Tree,
i.e., large write amplification still remains.

Similarly in TRIAD [31], couple of improvement techniques
have been applied to reduce the write amplification such as
(i) keeping the hot-entries longer in the main memory; (ii)

changing the tired merging policy by considering the overlap-
ping between runs in a level; and (iii) optimize the write in
commit-log. Unfortunately, the gain comes with a price. Lower
write amplification is archived by using a variation of tiered
policy (i.e., favor the write performance) and by scarifying
the look up performance (the higher the merge overlapping
threshold, the more degradation in look up). Furthermore,
similar to Dostoevsky [13], this method only reduces the high
write amplification of LSM-Tree, but cannot completely avoid
this issue.

Data distribution Knowing data distributions is crucial im-
portant in database systems and data streaming. However, ac-
curately record data distributions is expensive, leading to many
approaches for approximately capture data distribution (called
incremental histograms) [32]–[34]. For example, Gibbons et
al. [33] proposed an approximate histograms maintained in the
present of data insertion and a merge and split technique for
adjusting histogram buckets according to the data insertion.
Meanwhile, Mousavi et al. [32] introduced an approximate
approach for incrementally approximate compute equi-depth
histograms over sliding windows.

Those histogram methods have been applied in many as-
pects of database systems such as selectivity estimation (query
optimization), approximate query answering, join query execu-
tion. However, as mentioned in [17], [35], traditional indexing
using B+-Tree is not suitable to serve as non-equi-depth his-
tograms. Particularly, straightforwardly applying basic index
trees to serve non-equi-depth histograms should significantly
degrade indexing performance due to its unbalanced structure
or low node occupancy [17]. To the best of our knowledge,
there is no work applying histogram information in database
indexing.

VII. CONCLUSION

In this paper, we presented a learned distribution index
(LDI) structure as an alternative for LSM tree structure,
which is advocated for ingesting data rapidly into projections
of a columnar database to improve insertion performance.
Learning distributions, as we show, avoids the expensive sort-
merge phase of LSM. As a result, data ingestion performance
increases by more than an order of magnitude in compari-
son with other methods, while query performance remains
comparable to LSM-like indexing approaches. The cost of
learning distribution may lead to some non-compacted buckets,
causing additional maintenance in LDI. We believe this cost of
maintenance is reasonable as only the non-compacted buckets
are need to be inverted. Further study on LDI’s maintenance
remains as part of our future work.
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VIII. APPENDIX

A. Example: Tiered LSM-Tree

The Figure 10 shows the Tiered LSM-Tree behavior during
the data ingestion (Sample data D - Figure 1). As shown, there
are only two merges at the steps 2 and 4.

Fig. 10: Data loading with tired and tiered LSM-Trees.

B. An Experiment: LSM vs LDI in Column Databases

In the previous example we compared the performance of
LSM trees with LDI on a small example data. In this section,
we measure it experimentally on columnar databases based on
analytic results previously formulated [15].

Columnar databases. Columnar databases store data tables by
column where each column is stored separately. This allows
a query to access that precise data that it needs. In general,
each column can be stored separately, but this leads to high
tuple reconstruction cost. Column grouping (or projection in
C-Store [9] or Vertica [10]) is one way to reduce the tuple
reconstruction cost. The idea is to group a subset of columns
together, to benefit query operations that accesses all these
columns. This group of columns is called projection in C-
Store [9] or Vertica [10]. Column stores trade storage for
improved tuple reconstruction cost and query access. For
instance, it is possible to replicate columns across projections
as well as support a superprojection with all columns. We
assume a simplified columnar store model in which there are
partitioned projections with no replication of columns across
projections, and no superprojections.

LSM tree merge cost. We refer the reader to [15] for the
analytical cost of levelling and tiering merge policies, but
determine these costs experimentally over here.

We measure the total number of merges with different size
of data in a columnar store. In general, tiered LSMs cause
fewer merges than levelled LSMs, but in both the cases the
number is dominated by the constant factors that are multiplied
on a per level basis. These constants play a significant role
in a column database as shown in Figure 11. In Figure, the
column store has two configurations: 5 projections with each
projection has 3 columns, and 1 projection with all columns.
As shown in Figure, while the number of merges of single
LSM-Tree is quite reasonable, those of multiple LSM-Trees
are multiplied by the factor of the number of projections and
the T factor. In contrast, a LDI has close to zero merges.

Fig. 11: The total number of merges during data-loading
with tiered and levelled LSM trees. Multiple LSM trees on
columnar stores, single LSM tree on one column and LDI. The
columnar has 5 projections each of projection has 3 columns;
whereas on-column keep the data in only one projection (all
columns)

Fig. 12: Loading costs on HDD for different tables.

C. LDI: I/O Handler design principles

Avoid interference between concurrent read and write
operations: Many DBMSes support concurrent execution of
insert and read query requests. However, recent experiments
show that mixing of parallel reads and writes has a strong
negative impact on throughput of storage devices [36]. In our
approach, concurrent insertion and read queries are allowed,
but there is no mixing of insertion and read queries.

Concurrent transactions: Concurrent handling of queries can
be exploited to eliminate transfer of data which is redundant
among requests. Although multiple identical queries sent to a
DBMS at the same time are unlikely, it is common to have
overlap in data access by different concurrent requests. To
reduce query read cost multiple requests for overlapping data
is eliminated by combining requests for the same buckets.

Moreover, requests for different data that are physically
stored in close proximity should be grouped, since modern
storage devices can efficiently combine such access. To this
end, we collect the list of desired buckets and group them
into co-located bucket groups (note that bucket is the unit of
access, interchangeable with block). Since random I/O access
incurs additional overhead, we automatically switch to reading
an entire group of buckets (including some extraneous data),
based on a threshold θ. The θ threshold is determined for each



Fig. 13: Runtimes of different queries on HDD at different projections: (a) Runtimes on Projection1 with HDD; and (b)
Runtimes on Projection2 with HDD.

specific storage device, using the following formula:

θ =
TRead(Group)

TRead(Bucket)
(6)

where TRead(Group) is the time to read a bucket group and
TRead is the time to read a bucket.

Exploit internal parallelism of storage devices: We explain
how we choose the thread levels in SSDs. SSD has many
internal levels of parallelism. Different manufactures or even
different devices products may have variations in channels,
chips, dies, planes, allocation schemes (how data is allocated
on SSD) and so on. Furthermore, as a user, we have no control
on how data is physically placed on SSD, which depends on
firmware implementation and current usage of SSD.

Nevertheless, choosing the right number of threads can
improve the number of planes used, taking advantage of high-
bandwidth I/O channel bus and parallelism channel. Given
SSD specifications, Formula 7 defines the number of threads
used in our model. The idea is to increase the probability of
using many planes, while keeping the number of threads low
due to the overhead of switching threads.

Nthread =
Nchannel ∗Nchip ∗Ndie ∗Nplane

λ
(7)

Where Nchannel, Nchip, Ndie and Nplane are the number
of channels, chips, dies and planes in an SSD and λ is the
overhead costs of planning, switching, and buffering temporary
results of multiple thread in an SSD-controller.

In theory, CPU and main memory overheads in an SSD
controller are considered negligible. Thus, in our evaluation
we set λ = 1. In practice, these costs may have a noticeable
effect on performance (λ > 1). In order to determine a specific
value of λ for a drive, one would rely on an SSD-specific third
party benchmark. For HDDs, we rely on Native Command
Queuing (NCQ) [37] for sending parallel requests.

D. Experiment: Loading costs on HDD

Figure 12 details the loading costs of all four approach on
HDD with different datasets. As with HDD, LDI significantly
outperforms Sorted and Col LSM-like (it is, on average, 27X
and 18X times faster than Sorted and Col LSM-like across all

tables, respectively). The advantage of LDI on HDD load times
is similar to its advantages in the SSD evaluation, because the
overheads of Sorted and Col LSM-like approaches are caused
by mostly sequential extra I/O operations.

E. Experiment: Read Query Performance on HDD

We ran queries against two different projections:
Projection1 (29 columns) and Projection2 (4 columns) on
HDD with all competitors: LDI, LDI par (with parallelism
optimization), Sorted, Col LSM-like and Min-Max. Query
runtimes for HDD are shown in Figure 13.

The differences in query runtimes between LDI par and
other competitors are even larger on HDD. This is because the
throughput of SSD is much higher than throughput of HDD.
All performance of all methods were reduced on HDD. Sorted
typically has the fastest query runtimes in queries on HDD
(i.e., Figure 13(a) and 13(b)). This is because data is perfectly
sorted in Sorted. LDI par is only slightly slower than than
Sorted on smaller queries and on HDD (see Figure 13 (a)
and (b)). However, LDI par actually outperforms Sorted with
larger queries. LDI par can outperform Sorted by leveraging
our parallelism optimization, which is most effective on larger
queries (in terms of amount of data).

As with SSD, Col LSM-like and Min-Maxshows the slowest
query performance among evaluated approaches, for all tested
queries and on HDD. We only show the runtimes of queries
Q1 and Q2, as other queries take even longer. Col LSM-
like and Min-Max runtimes on Projection2 are faster (see
Figure 13(a) and (b)), but still slower than other methods.

F. Experiment: Effectiveness of concurrence and parallel pro-
cessing on HDD

Figure 14 shows the runtimes of different queries as we
vary the number of parallel threads (x-axis shows the number
of threads, y-axis shows the execution time in seconds).It
presents the results for Q1 through Q5 (queries described in
Table V). Both HDD works better with multiple threads. The
best number of threads on HDD is 8 threads. Similar to SSD,
continuing to increase the number of threads offers very little
benefit or potentially begins to slow queries down due to the
overhead costs of multi-threading.



Fig. 14: Parallel on HDD.

Additionally, the results in Figures 14 and 9 further confirms
that SSD has better support for parallelism as compared to
HDD, since the benefits of parallelism are larger on SSD vs
HDD. In particular, the improvement of parallelism optimiza-
tion on SSD is around 54% (at 16 threads), while on HDD
the improvement is around 25% (at 8 threads).


