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Abstract—Science is conducted collaboratively, often requir-
ing knowledge sharing about computational experiments. When
experiments include only datasets, they can be shared using
Uniform Resource Identifiers (URIs) or Digital Object Identifiers
(DOIs). An experiment, however, seldom includes only datasets,
but more often includes software, its past execution, provenance,
and associated documentation. The Research Object has recently
emerged as a comprehensive and systematic method for aggre-
gation and identification of diverse elements of computational
experiments. While a necessary method, mere aggregation is
not sufficient for the sharing of computational experiments.
Other users must be able to easily recompute on these shared
research objects. In this paper, we present the sciunit, a reusable
research object in which aggregated content is recomputable.
We describe a Git-like client that efficiently creates, stores,
and repeats sciunits. We show through analysis that sciunits
repeat computational experiments with minimal storage and
processing overhead. Finally, we provide an overview of sharing
and reproducible cyberinfrastructure based on sciunits gaining
adoption in the domain of geosciences.

I. INTRODUCTION

Research objects—aggregations of digital artifacts such as

code, data, scripts, and temporary experiment results—provide

a means to share knowledge about computational experi-

ments. In recent times, sharing computational experiments

has become vital; scientific claims, inevitably asserted via

computational experiments, remain poorly verified in text-

based research papers. Research objects, together with the

paper, provide an authoritative and far more complete record

of a piece of research.

Several tools now exist to help authors create research

objects from a variety of digital artifacts (see [1] for several

tools and [2] for a variety of research objects). The tools enable

research objects to be shared on websites that disseminate

scholarly information, such as Figshare [3]. Despite their

advantages, shared research objects do not permit easy reuse of

their contents to verify their computations, or easy adaptation

of their contents for reuse in new experiments. Often, the

extent of reuse is subject to the amount of accompanying

documentation, which may be limited to compilation and

installation instructions. If documentation is scanty, research

objects will remain unused.

The minimum use case for sharing a computational exper-

iment (in the form of a shared research object) involves re-

peating its original execution and verifying its results. To truly

exploit its potential, however, it must support modified reuse.

Therefore, the research object must be created and stored

not as a simple aggregation of digital content, as previously

advocated [4], [5], but in a readily-computable form: as a

reusable research object. We demonstrate the distinction in

two ways.

Consider a typical research paper with an analysis based

on large amounts of code and data, and assume that the

researcher authoring the paper has used the code and data

to conduct a number of experiments that produce the paper’s

target figures and results. The example paper’s digital artifacts

relating to its experiments may be bundled together in a

medium such as a file archive (.tar), compressed file format

(.gz), virtual image, or container. A shared research object

is free to use any of these mediums. A reusable research

object, however, must use a virtual image or container, since

it must produce a “computational research object” that, when

downloaded and shared, will guarantee an instantly-executable

unit of computation.

Also consider the example paper’s metadata, which, similar

to the metadata in most papers, is interspersed throughout the

project’s written analysis, and throughout its code and data.

The metadata can take many forms, including annotations,

version information, and provenance. A shared research ob-

ject’s metadata usually serves a purely informational purpose,

and is seldom used literally in the paper’s experiments. A

reusable research object, however, utilizes literal metadata by

directly linking it to the code and data of the experiments.

In particular, provenance, if collected in standard form, can

guide different forms of reusable analysis – exact, partial,

or modified reuse. Keywords and annotations can provide

reference to additional datasets for modified reuse. In other

words, a reusable research object can execute conditionally

based on its embedded metadata, instead of simply including it

as a stand-alone digital artifact that requires more interpretive

labor to reason about and reuse.

In this paper, we describe the sciunit, a reusable research

object that has a lifetime beyond being shared on schol-

arly exchange websites. The sciunit does not simply bundle

digital artifacts, but uses application virtualization (AV) to

automatically create a container of an executable application.

In AV, operating system calls during application execution

are interrupted to enable the copying of all binaries, data,

and software dependencies into a container. The resulting

container is portable and instantly reusable: it can be run on

any compatible machinewithout installation, configuration, or

root permissions.

Similar to shared research objects, users can attach ad-

ditional annotations to reusable research objects to describe
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containers. Each container also incorporates associated prove-

nance, and users can use the included provenance to create

repurposed containers These containers enable exact or partial

repeatability of the sciunit.

While AV facilitates the creation of reusable research ob-

jects, in its traditional form [6], [7] it is inherently inefficient

when used to create multiple containers that are each based on

slight modifications of an application. On repeated container

creation, traditional AV methods behave the same regardless

of the amount of similarity that exists between the original

and modified applications. Traditional methods always cre-

ate an entirely new container, which will contain wholesale

duplication of digital artifacts, such as system dependencies,

common binaries, or even common data files. Additionally, a

large digital artifact present in two application versions, but

that changes only slightly in content, will still consume its

full amount of space in each corresponding container. Thus

space consumption grows substantially, which is particularly

of issue when a user shares different versions of an analysis

or pipeline. We show how, when using our own AV method,

multiple containers can be stored efficiently in one sciunit

using a common block-based storage based on content de-

duplication techniques [8].

We further increase reusability of sciunits by using their

embedded metadata to help guide in their comprehension and

modification. In particular, we use included provenance to pro-

vide an overview of the overall workflow of a container. When

AV techniques are used to create a container, traditionally the

collected provenance information is at the file and process

level, which is too fine-grained to show the overall workflow.

This paper makes the following contributions: (i) We present

Sciunit-CLI[9], a Python/C-based Git-like client that creates

sciunits, shares them on scholarly exchange websites such as

Figshare and Hydroshare, and repeats shared sciunits either

locally or remotely; (ii) We describe the AV method used in

Sciunit-CLI to build a container for reuse; (iii) We describe

versioned storage based on content deduplication methods

to efficiently store multiple containers in a single sciunit;

and (iv) We describe the interactive provenance visualization

that summarizes embedded provenance in a container and

simplifies repeating the container partially or modifying it.

The rest of the paper is organized as follows:

• Section II: overall architecture of our work.

• Section III: creating a sciunit using application virtualiza-

tion that builds a container with embedded provenance.

• Section IV: storing multiple containers in a single sciunit.

• Section V: utilizing provenance within a sciunit for

repeating and reuse.

• Section VI: optimizing the embedded provenance for

visualization in summarized graphs.

• Section VII: detailed experimental analysis.

• Section VIII: evolution of research objects, and their

creation and use in related applications.

• Section IX: conclusions.

Fig. 1. Conceptual view of the steps required to run the Food Inspection
Evaluation [10] predictive model

II. THE SCIUNIT-CLI: ARCHITECTURE AND USE

Our reference implementation is a client program, the

Sciunit-CLI[9] that creates, stores, and executes reusable re-

search objects. We use a real-world example to highlight

the primary commands and salient features of the client.

Figure 1 shows an example of a predictive model used for

forecasting critical violations during sanitation inspection [10].

The software consists of scripts written in different languages

(R and Shell) that operate on input datasets acquired from

the City of Chicago Socrata data portal [11]. The output of

the predictive model is continually tested using a double-

blind retrodiction; the Department of Public Health conducts

inspections via its normal operational procedure, which are

compared with the output of the model. The pre-processing

code is shared on GitHub [12], the data is available via public

repositories [11], and the predictive model analysis is also

published [13].

Bundling these artifacts into a shared research object would

likely be inefficient given data from nine different sources,

which changes periodically, making analysis conducted within

a certain time range obsolete. The Sciunit-CLI can be used to

build a reusable research object consisting of identifiers of

one or more re-executable containers, along with other listed

digital artifacts.

The Sciunit-CLI is a Git-like Python/C command-line in-

terface (CLI) client used to build sciunits. Figure 2 shows a

sample user interaction with this client. The user instantiates

a namespaced sciunit titled FIE (Line 1), and can associate

annotations with the sciunit (Line 2). To create a container

within the sciunit, the user runs the application with the

package command (Line 3). Packaging an application also

incorporates provenance information of the application run;

provenance can also be audited without creating a container

(Line 4). Many containers can be created within the same
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Fig. 2. User interaction with sciunit client

sciunit by using the package command again (Line 5).

The package command makes minimal assumptions re-

garding the nature of the application. In particular, the user

application can be written in any combination of programming

languages, e.g. C, C++, Fortran, Shell, Java, R, Python,

Julia, etc, or be used as part of a workflow system such as

Galaxy [14], Swift [15], Kepler [16] etc. While our description

assumes local execution, in practice, an application’s execution

can be either local or distributed. We choose an example with

local execution since the description of the underlying AV

method (Section III) for distributed and parallel applications,

such as database applications [17] and HPC programs [18] is

beyond the scope of the current paper.

The sciunit is stored locally unless explicitly shared with

a remote repositoryusing the stage command, which instructs

the client to upload the container to a Web-based repository

(Line 6). The Sciunit-CLI uses Hydroshare [19] for geoscience

applications and Figshare [3] otherwise as its Web-based

repository.

A container within the sciunit can be re-run directly on

the local machine with the repeat command, or on a remote

execution server with the repeat remote command (Lines 7

and 8). In our reference implementation, remote execution

refers to execution via Hydroshare. On remote execution,

the target container is automatically downloaded to a remote

execution server, and, if the container is compatible with the

execution server’s architecture, the execution server runs it and

sends the results back to the user. The user can also modify a

container by downloading it, modifying its code or data and

running it locally, and then uploading the modified container,

at which point a new version of the container can be staged.

Further improvements of the repeat remote command such

as connecting with the remote server via ssh or enabling partial

remote executions is part of our ongoing work. The client,

and accompanying server-side infrastructure that stores and

manages sciunits, form a reproducible infrastructure, currently

in use within the geosciences domain in the United States

(http://geotrusthub.org). The site provides full technical docu-

mentation and examples from domain sciences using the client.

III. CREATING SCIUNITS

Tools based on application virtualization method typically

run in two modes: an audit mode to create a container, and

an execution mode to re-run a container [6], [7]. In AV audit

mode, a container of a user application is created as the user

executes the application (in the context of auditing, such an

execution is termed a reference execution). We describe the

audit process assuming that the application is running on a

Linux machine. During execution, the Linux strace utility

is used to monitor the running application process. Strace
internally attaches itself to the process using the ptrace system

call to monitor all the system calls of the running process. It

intercepts each system call1 to determine the running process’

state and the arguments to the system call. For example,

when a process accesses a file or a library using the system

call fopen(), the fopen() call is intercepted. The intercepted

system call is “paused” to examine input arguments and

the process control block. For instance, in fopen(), the file

path parameter is extracted. By intercepting all calls, AV

auditing determines all2 program binaries, libraries, scripts,

and environment variables that a user program is dependent

on. Inclusion of data files is optional, which the user may or

may not want to package based on the size of the dataset. The

audit process is similar for Windows and macOS, except that

different OS-specific monitoring utilities are used.

The system call pause time is brief, requiring only two

lightweight context switches added to the normal system call

flow; experiments show that the overhead of intercepting

system calls is minimal. During the pause, the identified

dependencies are used in two ways: first, to create a “sandbox”

application container that includes all identified dependencies,

and second, to create an interaction log of the reference execu-

tion. The sandbox container is named with a package hash and

placed in a special “root path” (as described in Section IV),

and contains all the dependencies that were identified during

the reference execution audit. The dependencies are placed

at the same path within the special root path as they were

identified in the original system. Figure 3 shows the contents

of a container.

The interaction log generated during the AV audit phase

contains interactions between processes when they are forked

or execed, or between processes and files when files are opened

or closed. The log also stores the logical range of times

that processes interacted with other processes or with files.

A provenance graph is obtained by toplogically sorting the

interaction log.

In AV execution mode, the application is executed from

the container itself by monitoring its processes with strace,

interrupting application system calls and extracting their path

1There are approximately 50 such calls defined in the POSIX standard
2Not all program dependencies can be detected through this method. But

a program’s static dependencies are much simpler to gather using programs
such as file, ldd, strings, and objdump. Our client provides commands for
users to find additional dependencies, and include them, if necessary.
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Fig. 3. Example sciunit container

arguments, and redirecting all system call paths to paths within

the special root path of the sandbox container. By redirecting

all file requests into the container, the AV execution method

fools the application program into believing that it is executing

on the original audit-time machine with original file paths [7].

The advantages of using the AV method are the ease with

which a reusable research object can be created, and the

machine-agnostic reuse that such an object provides. The

disadvantages of the method are that the generated provenance

is too fine-grained (at the file and process level) for ready

analysis, and that repeated containerization can lead to many

redundant files in the same research object. We address these

two concerns in the next two sections.

IV. STORING SCIUNITS

A reusable research object may include many containers. If

the AV audit method described in Section III is used on an

application to create a container for a sciunit, then each time

that same application is audited all the same file dependencies

of the application will be copied into a new container. This

copying takes place even if the same dependencies were

present in other previously-created containers based on the

same audited application. One way to eliminate such depen-

dencies is to check for duplicate dependencies as the container

is created during the AV audit phase. However, this slows the

audit phase down delaying the construction of the container.

The Sciunit-CLI de-duplicates on completion of the package
command as a background process.

Sciunit-CLI uses content-defined chunking to divide the

container’s content into small chunks identified by a hash

value. New chunks are compared to stored chunks, and when-

ever matches occur, redundant chunks are replaced with small

references that point to stored chunks.

To identify chunks in a file, we do not use fixed-size

chunking, which is simple and fast but faces the problem of

low de-duplication ratio that stems from the boundary-shift

problem [8]. For example, if one or several bytes are inserted

at the beginning of a file, all current chunk boundaries declared

by FSC will be shifted and no duplicate chunks will be

detected. Instead we use content-defined chunking (CDC)[8],

that uses a sliding window technique on the content of files

and computes a hash value (e.g., Rabin fingerprint [20]) of

the window. In Rabin CDC, the Rabin hash for a window

containing a n byte sequence B1, B2, . . . , Bn is defined as a

polynomial RH(X(i,n)) =:

RH(B1, B2, ..., Bn) = {
n∑

x=1

Bxp
n−x} mod D (1)

in which D is the average chunk size. Rabin hash is a rolling

hash algorithm since it is able to compute the hash in an

iterative fashion, i.e., the current hash can be incrementally

computed from the previous value using a recurrence relation

defined as:

RH(X(i,n))← (RH(X(i−1,n))+Xi−X(i−n)) mod M (2)

in which n is the window size, X(i,n) represents the window

bytes at byte position ‘i’, and M is the total length of the

file. Using the recurrence relation, the hash value at any byte

position i can be cheaply computed from the hash at byte

position i−1. A chunk boundary is declared if the hash value

satisfies some pre-defined condition, such as if the lowest k
bits of the Rabin hash value match a threshold value.

Content-defined de-duplication is used in the popular Linux

utility rsync and we use it in a similar way in our work.

However, unlike rsync we search for hashes differently. In

particular, instead of using a combination of fixed-size and

rolling hashes, as used in rsync, we simply iterate over all

calculated hashes, speeding up computation. This is justifiable

since we expect each research object to be fairly modest in

size, unlike large-scale storage and backup systems where

rsync is commonly used.
Once rolling hashes have been computed from a file, and a

different block is detected, the difference itself can be be stored

either as a delta or as a distinct block. The delta method is

typically used when the predominant use case is to efficiently

obtain a specific version of a file. In our case, we needed to

strike a balance between storing multiple overlapping contain-

ers and storing versions of a single container. Thus we chose

the distinct block method, as shown in Figure 4, in which

all unique blocks across all containers, versioned or not, are

stored.
Given this optimization, a container then is just a symbolic

view over deduplicated storage, as shown in Figure 4. How-

ever, for the user this use of optimized storage is opaque.

The Sciunit-CLI uses a manifest to store multiple containers,

and to select a specific container to run. To run, the client

first materializes the selected container by enumerating and

simply concatenating the blocks corresponding to the selected

container. The materialization requires negligible processing.

This procedure is fundamentally different from a delta-based

mechanism, in which the blocks corresponding to a selected

container will have to first reconstructed by applying the

deltas.
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Fig. 4. Block-based deduplication of containers

V. REUSING SCIUNITS

When a sciunit is published, the server distinguishes be-

tween the computational part (i.e. the application container)

and the non-computational part (i.e. the informational digital

artifacts) of the sciunit. The computational part is associated

with a cloud instance that can remotely execute the container

on user request. A new user can reuse a published sciunit in

one of three ways: (i) exact repeat-execution, (ii) partial repeat

execution, or (iii) modified repeat execution. To exactly repeat,

a container is simply downloaded and then run locally with

the repeat command, or run remotely with the repeat remote
command: the container will execute exactly as it did when it

was created with the package command. To partially repeat or

run a modified repeat, a container is downloaded, processed

for partial or modified execution, and then either run locally

or published to run remotely. We now describe the processing

required for partial and modified repeat executions in detail.

A. Partial Repeat Execution

To partially repeat, a user selects one or multiple processes

within a container. These processes are identified by their short

pathname or PID, and the user can also use the provenance

graph to aid in identification. While the provenance graph can

be quite detailed for a user to choose specific processes, in

Section VI we describe how a user can see a summarized

application workflow akin to the workflow presented in Figure

1 from the provenance graph. Thus, for example, using the

container from Figure 1, a user selects the processes “Calculate

violation” and “Generate model data” as the group of pro-

cesses to be partially repeated. Since this user-selected group

of processes may not include all related processes needed

for re-execution, we must determine these related processes,

along with the data files they reference. The determined

processes and files will constitute the new “partial repeat”

container or “sub-container”. Algorithm 1 shows the procedure

for building the sub-container. It starts with the list of user-

selected processes (selectedProcs), and progresses to include

all relevant processes and files by traversing the lineage of

the graph (Lines 10-16). The getDeps function assumes that

any intermediate data files, if included as dependencies, still

exist as generated from previous execution runs. The execution

of this algorithm ensures that the data file “Heat map data”,

Algorithm 1: Build sub-container for partial execution

1 BuildSubContainer(selectedProcs, container):
2 subContainer = initialize(container)

3 allProcs = getAllProcs(container)

4 requiredProcs = getProcs(selectedProcs,

allProcs)

5 reqProcDeps = getDeps(requiredProcs)

6 foreach dep in {reqProcDeps} do
7 /* add dep to correct location in subContainer */

8 add(dep, container, subContainer)

9 return subContainer

10 getProcs(selectedProcs, allProcs):
11 result = {selectedProcs}
12 foreach proc in {allProcs} do
13 foreach selProc in {selectedProcs} do
14 if isDescendant(proc, selProc) then
15 result = result ∪ proc
16 break

17 return result

18 getDeps(requiredProcs):
19 result = ∅
20 foreach reqProc in {requiredProcs} do
21 /* retrieve all related files and dependencies */

22 deps = relevantResources(reqProc)
23 result = result ∪ deps

24 return result

generated from the previous run of the process “Calculate heat

map”, is included in the sub-container, even though in the new

partial repeat execution the process “Calculate heat map” will

not be re-executed.

B. Modified Repeat Execution

To run a modified repeat of a sciunit container, a user ex-

amines a downloaded container and determines how particular

computations within it should be modified (e.g. by modifying

certain sections of code or input data). The sciunit’s included

provenance graph aids this modification task greatly. Next the

user runs the modified container. To share the modification,

the user would simply run it with the package command, and

then publish it with the stage command. Enabling modification

through a visualization mode, in which users can specify

alternate processes or input data files assisted by a GUI, is

part of future work.

VI. PROVENANCE GRAPH VISUALIZATION

Provenance information generated by AV audit methods

is fine-grained. A graph created from a complete set of

generated provenance, using normal visualization structures

such as tree or list representations, would be far too replete to

be of real practical value. When viewed, this graph would

present significant system-level detail that would inhibit a
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basic comprehension of the overall application workflow. For

example, the intuitive workflow of Figure 1, consisting of 12

nodes and 13 edges, would be represented fully as a dense

graph of 146 nodes and 321 edges (Figure 5(a) shows a part

of this replete graph). Thus, to create a more intuitive graph,

we use a graph summarization method that condenses the low-

level details of the full generated provenance information. The

graph summarization method is explained in detail in [?],

and is briefly described in this section. We further describe

how we extend the summarization method to create a graph

that presents dynamic workflow cross-sections in a responsive

visual interface.

Given a directed graph G = (V,E), where V is the set of

vertices3 and E is the set of edges, we denote Input(u) and

Output(u) as the sets of input and output edges of vertex u.

Respectively, Input(u) = {e| ∃v ∈ V, e = (v, u) ∈ E}, and

Output(u) = {e| ∃v ∈ V, e = (u, v) ∈ E}. The direction

of an edge characterizes the dependency of its vertices. For

example, a process u spawned by process v is represented by

the edge (u, v), and a file u read by process v is represented

by the edge (v, u). The graph G is summarized based on the

following two rules:

Definition 1 (Similarity): Two vertices u and v are called

similar if and only if they share the same type and have the

same input and output connection sets: Type(u) = Type(v),
input(u) = input(v) and output(u) = output(v).

The similarity rule groups multiple vertices into a single

vertex if the vertices have same type and are connected by

the same number and type of edges. Additionally, edges of

similar vertices will be grouped into a single corresponding

edge. When applied to our provenance graph, this rule groups

different files in the same directory.

Definition 2 (Packability): A vertex u belongs to v’s

generalization set if and only if vertex u connects to v and

satisfies one of following conditions:

• Vertex u is a file that has only one connection to process

v: Type(u) = file and {∃!e | e ∈ E ∧ (e = (u, v)∨ e =
(v, u))}.

• Vertex u is a process that has only one output connection

to process v: Type(u) = process and {∃!e | e ∈ E∧e =
(u, v)}.

• Vertex u is a file that has only two connections – an out-

put connection to process v and an input connection an-

other process x: Type(u) = file and {∃!(e1, e2) | (∃x ∈
V, v 	= x) ∧ (e1 = (u, v) ∈ E, e2 = (x, u) ∈ E)}.

The packability rule identifies hubs in the provenance graph

by packing files or processes that are connected by single

edges into their parent nodes. It also packs files that are

generated by a single process and consumed by a single

process into their parent processes by producing a process-

to-process edge.

When applied in sequence, the similarity and packability

rules condense the detail-level of a graph while preserving

its core workflow elements. Figure 5 illustrates how applying

3in our graph, a vertex is of type ”file” or of type ”process”

these two rules to a replete graph produces a graph summary

that shows the primary processes in a workflow. Figure 5(a)

presents the original replete provenance graph of one sub-

task of the FIE workflow (the data processing steps “Calculate

Violation” and “Calculate Heat Map” of Figure 1). Applying

the two summarization rules produces the final graph in Figure

5(c), which is similar to the conceptual workflow (except it is

upside-down, due to the nature of provenance data flow).

To lay out the summarized graph, we adopt two visual-

ization techniques: scoping and annotation. In scoping, nodes

similar to each other or packed together are represented as sin-

gle nodes, which can be expanded on user action to reveal the

details they conceal. For example, in Figure 7, similarity and

packability rules group the nodes within the box into the single

node “P R 27070” (process 27070 runs a subprocess using

file “21 calulate violation matrix.R” and writes data to file

”violation data.Rds”). The expanded view within the box was

obtained by clicking on the concealing node “P R 27070.”

Here “Process G 5” is another concealing node hiding all the

dependencies of the R process calculating the violation matrix.

To further improve the layout of the graph, we use an

annotation method that assigns higher visualization precedence

to process nodes, but annotates them with corresponding file

nodes. Figure 5(d) shows how the annotation “File G 2,”

which is a library dependency used both by “P R 27070”

and “P R 27091,” is attached to the two process nodes that

generated it. Thus, given a file with n edges (n ≥ 2), we

replace this file with n annotations. A user can always toggle

the expanded view to see how the file and process nodes were

originally connected. We choose to annotate files – instead of

processes – since an application workflow is typically defined

by the primary processes that it runs.

VII. EXPERIMENTS

The true usefulness of sciunits can only be measured by

their adoption. Efficiency of creating sciunits can be a driving

force in adopting the use of sciunits over traditional shared

research objects. When an efficiently-versioned, easily-created

sciunit is shared, along with an embedded, self-describing

application workflow, we believe the probability for reuse will

greatly increase. In this section, through two complex real-

world workflows, we quantify the performance of packaging

and repeating sciunits, the time and space overheads of storing

them, and the efficiency of reusing them utilizing integrated

provenance visualizations.

A. Use cases

We consider two real-world use cases for experimental

evaluation: (i) the Food Inspection Evaluation (FIE) [10]

workflow, a computationally-intense use case which has been

the running example in our paper, and (ii) the Variable

Infiltration Capacity (VIC) [21] model, an I/O-intensive data

pre-processing pipeline for a hydrology model taken from

geotrusthub.org. The first use case is notable for its trans-

parency in its rigorous inspection audits, owing to the influence

of the Open Data movement within the City of Chicago. The
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Fig. 5. Graph summarization of a replete graph

Fig. 6. Expanded view of concealing node ”P R 27070”

second use case is a highly-relevant test bed for sciunits: the

VIC model is very popular in the hydrology community, and

its data preprocessing pipeline, which relies heavily on legacy

code, is notoriously difficult to reassemble [21].

Tables I and II describe the details of FIE and VIC in

terms of source code file programming languages, number of

source code and data files, number of program files required

as dependencies, and total application sizes (both FIE and

VIC have four sub-tasks, labeled 0, I, II, and III, that are

described below). Figures 1 and 7 show conceptual views of

the application workflows for the two use cases.

Each use case is characterized by a shareable model, in

which each step is conducted independently by one user, and

subsequently shared with another user who builds upon or

forks the shared workflow in the following step. Thus the FIE

workflow, for example, is broken down into the following sub-

tasks, each encapsulated in a single application: (i) FIE 0,

which calculates a heat map from downloaded inspection

records; (ii) FIE I, which processes the heat map to generate

data model inputs; (iii) FIE II, which applies a specific model

Fig. 7. Conceptual view of the VIC workflow [21]

and validates it; (iv) FIE III, which downloads the original

inspection records and applies an end-to-end validation routine

to the previous three sub-tasks. The download process of

subtask iv is often the most time-consuming step.

The main sciunit client was implemented in Python and

C. Sciunit’s versioning tool was written in C++, using the

block-based deduplication techniques proposed in [8] and

[20]. Sciunit’s provenance graph visualization was written in

Python, using libraries from TensorBoard [22]. All sciunit

client package and repeat experiments, along with their base-

line normal application runs, were conducted on a laptop with

an Intel Core i7-4750HQ 2.0 GHz CPU, 16 GB of main

memory, and a 1 TB SATA SSD, running the Arch Linux

64-bit OS.

B. Creating Sciunits

Tables I and II present the baseline normal execution times

for the sub-tasks of the two use cases. We note that each

application encompasses substantial resources (in the form

of code and data), has many external dependencies, and

is also characterized by lengthy CPU-and-memory-intensive
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TABLE I
FOOD INSPECTION EVALUATION SUB-TASK APPLICATIONS

FIE 0 FIE I FIE II FIE III
Source Languages R, Bash R, Bash R, Bash R, Bash

Source Files 19 20 24 29

Data Files 2 8 14 14

Dependency Files 255 255 411 659

Size of All Files 133.2MB 178.4MB 289.7MB 306.6MB

Normal Run Time 52.046s 238.833s 295.785s 7200s

TABLE II
VARIABLE INFILTRATION CAPACITY SUB-TASK APPLICATIONS

VIC 0 VIC I VIC II VIC III
Source Languages C, C++, Python, C shell, Fortran

Source files 35 61 77 97

Data files 3689 6313 11460 11481

Dependency Files 247 260 314 357

Size of All Files 1.2GB 1.3GB 2.2GB 2.3GB

Normal Run Time 158.734s 306.069s 363.147s 377.29s

tasks. Additionally, the nature of FIE’s processing tasks differ

significantly from those of VIC. FIE front-loads its input data

sets into memory, and then utilizes machine-learning logic to

process its data. VIC also runs many intricate calculations, but

differs from FIE in that it interlaces file input and output op-

erations regularly throughout its code. This difference will be

key in understanding that sciunits have minimal performance

impact on most – but not all – types of applications.

Figure 8 compares the baseline normal execution time of

each subtask4 with the time consumed by packaging the sub-

task with the sciunit package command, and with the time

consumed by repeating the sub-task with the sciunit repeat
command. We note that the performance impact of auditing

and repeating on FIE’s run times was negligible: auditing

FIE with package resulted in only a 3.6% time increase, and

executing FIE with repeat added only a 1.3% increase to

run time. Conversely, both packaging and repeating VIC with

sciunit each nearly doubled the original application run times:

as noted in the preceding paragraph, it was evident that us-

ing sciunit with IO-intensive applications affected application

performance significantly.

We obtain one further observation from these experiments

by comparing each application package time with its cor-

responding repeat time. Compared to application repeat in-

creases, auditing increases were slightly higher. This difference

can be understood by examining sciunit’s behavior during AV

audit-time: auditing entails copying an application’s code and

data into a sciunit container, but running the sciunit container

with repeat, however, only redirects to these copied files, and

therefore precludes the file copy time.

C. Storing sciunits

Figure 9 presents the space saved by storing multiple sciunit

containers in deduplicated storage. The total space consumed

4Test results for the FIE III and VIC III sub-tasks were omitted due to
significant amounts of network-dependent downloading operations.

Fig. 8. Execution times for normal runs, creating containers, and repeating

Fig. 9. Saved space with content deduplication

by FIE versions 0-III, storing each version separately, was

907MB, compared with a deduplicated total of 333MB. Sim-

ilarly, VIC versions 0-III consumed 7GB in total separate

storage, but when deduplicated consumed a total of 3GB.

We also measured the computational complexity of com-

mitting and reconstructing a version to and from dedupli-

cated storage. Committing a package involves taking an input

container, constructing a single-file archive from it, and then

performing deduplication on the archive against stored blocks.

Consequently, commit times are a function of the size of the

container. The reconstruction process only requires extracting

the relevant blocks from storage and creating a package. Even

though reconstruction is merely a block-concatenation process,

it also entails recreating the original file entries from the block,

and therefore can have a measurable time overhead.

We measured both commit and reconstruction times that

were far less than the normal baseline application execution

times, and which would likely be imperceptible to users.

Figure 10 shows the time in seconds for committing and

reconstructing each sub-task5. Commit times were always

greater than reconstruction times, due to the computation of

rolling hashes during commit6. Reconstruction times were

dominated by the process of un-archiving individual files.

5We depicted only packages of large size in order to clearly compare
differences in commit and reconstruction times.

6The time for deduplication itself during commits was negligible, since it
consists of single hash table lookups.
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Fig. 10. Execution times for committing and reconstructing versions

D. Reusing sciunits with Provenance Visualizations

Application virtualization has traditionally led to fine-

grained provenance graphs that are often difficult to decipher.

In this sub-section we determine if our summarization rules

produce a usable provenance graph that is closer to a the-

oretical, intuitive user application workflow. We focus this

discussion on experiments for the FIE sub-tasks, but note that

experiment results for the VIC sub-tasks were similar.

To evaluate the effectiveness of summarization, we first con-

sidered three traditional, replete (i.e. fine-grained) provenance

graphs generated by the legacy PTU application on auditing

FIE I, FIE II, FIE III7. We calculated the number of nodes

(each a process or a file) and edges present in each replete

graph. Next we calculated the number of nodes present in

the corresponding sciunit container provenance graphs (these

latter, summarized graphs were produced using the similarity

and packability rules). Figure 11 depicts a comparison of the

two graphs. It should be noted that the same provenance log

(produced by PTU on audit) was used in the generation of

both sets of graphs.

Graph summarization reduced the number of file nodes,

process nodes, and edges by averages of 90%, 46%, and 86%.

On closer examination, since the annotation technique only

applies to files and their associated edges, we observed a larger

decrease in the number of files and edges than the decrease in

the number of processes. Of crucial – but less measurable

– importance, we noted that the much smaller number of

nodes and edges of the summarized graphs also carried more

meaningful, intuitive labels, similar to those in Figure 5.

We also measured the number of clicks needed to expand

summarized graphs to replete graphs. For FIE III, which had

the largest graph, expanding any summarized node required

a maximum of four user clicks to reach its replete view.

Expanding all the nodes in this large graph took 45 clicks.

This observation showed that graphs were summarized very

well spatially and intuitively, yet still capable of allowing fully-

detailed provenance examination with a modest amount of user

interaction.

VIII. EVOLUTION OF RESEARCH OBJECTS

In this section we trace the evolution of the concept of

research objects and their use toward advancing scholarly

communication. Research objects are increasingly seen as the

7We did not consider FIE 0 in this analysis since its original replete graph
was too small and simple to benefit measurably from summarization.

Fig. 11. Number of nodes and edges in original and summarized graphs

new social object for advancing science [23]. They can be

used for dissemination of scholarly work, measuring research

impact, and assessing credit and attribution [24], which is the

past was mostly done through research papers. The Research

Object Model [4], [25] is a comprehensive standard defining

the concept of a research object as a bundle of artifacts that

provides a complete digital record of a piece of research.

Implementations of the standard have primarily focused on

structured workflow objects [26] [27] [28], and have not yet

encompassed general applications (i.e. applications executed

without a formal workflow system). In this paper, we describe

the sciunit client, a tool for creating a research object that

includes containers created during run-time execution of an

application, within a workflow system [14], [15], [16] and

outside [29].

To create a research object, digital artifacts must be placed

within it, either manually with explicit commands such as

those used in RO-Manager [30] (a tool that uses the RO-

Bundle specification [5]), or automatically by using an AV

tool such as Code, Data, and Environment (CDE) [6] [31]

that containerizes an application as it executes. In this paper,

we have chosen the AV tool Provenance-To-Use (PTU) [7]

[32], which is built on top of CDE, to automatically capture

provenance while creating containers, and have extended it for

versioning and summarizing its provenance. We exclude more

recent methods (such as [33]) that require users to learn new

languages, and instead focus on the integration of DevOps

tools in research objects.

Recorded provenance can be made more conducive to new

analyses by summarizing it using statistical [34] and non-

statistical [35] [36] methods. Our sciunit client uses non-

statistical methods to summarize a research object’s prove-

nance, and extends the methods to visualize the summarized

provenance spatially.
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Other methods to build and reuse containers, such as

Topology and Orchestration Specification for Cloud Applica-

tions [37], still rely on user action to create the topology, rela-

tionship, and node specifications that are eventually translated

to Dockerfiles [38]. In our case, Docker is merely a wrapper

for standardization, since application virtualization creates a

self-contained container, and the translation to Dockerfiles

from the collected provenance is fairly straightforward.

IX. CONCLUSION

Computational reproducibility [39] is a formidable goal

requiring advancements in policy [40], user perception [41],

and reproducible practices and tools [1]. As we embrace

this goal within the geosciences [42], we have encountered

that general tools advocated for computational reproducibility

must be enhanced in various ways. In this paper, we have

challenged simple aggregation and advocated for containers,

storing multiple of them with a relatively low storage cost, in

logical sciunits, and their reuse in exact, partial, or modifiable

forms using intuitive description of the reference execution.

We demonstrated an easy-to-use Git-like client, the Sciunit-

CLI that enables reproducibility for a wide variety of use

cases. Yet, there are emerging requirements to address repro-

ducibility within Jupyter notebooks, Matlab, distributed data-

intensive programs, parallel HPC applications, which we hope

to address as part of future work.
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[28] I. Santana-Perez and M. S. Pérez-Hernández, “Towards reproducibility
in scientific workflows: An infrastructure-based approach,” Scientific
Programming, 2015.

[29] Q. Pham, T. Malik, I. Foster et al., “SOLE: Linking research papers
with science objects,” in IPAW, 2012.

[30] https://github.com/wf4ever/ro-manager, 2016, [Accessed 02-May-2017].
[31] P. J. Guo, “CDE: Run any Linux application on-demand without

installation,” in LISA, 2011.
[32] H. Meng, R. Kommineni, Q. Pham, R. Gardner, T. Malik, and D. Thain,

“An invariant framework for conducting reproducible computational
science,” Journal of Computational Science, vol. 9, 2015.

[33] P. Ivie and D. Thain, “Prune: A preserving run environment for repro-
ducible scientific computing,” in IEEE e-Science, 2016.

[34] P. Macko, D. Margo, and M. Seltzer, “Local clustering in provenance
graphs,” in ACM CIKM, 2013.

[35] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph
summarization,” in ACM SIGMOD, 2008.

[36] S. Cohen, S. Cohen-Boulakia, and S. Davidson, “Towards a model of
provenance and user views in scientific workflows,” in Data Integration
in the Life Sciences, 2006.

[37] Standard OASIS, “Topology and orchestration specification for cloud
applications version 1.0,” 2013.

[38] R. Qasha, J. Cała, and P. Watson, “A framework for scientific workflow
reproducibility in the cloud,” in IEEE e-Science, 2016.

[39] J. Freire, P. Bonnet, and D. Shasha, “Computational reproducibility:
State-of-the-art, challenges, and database research opportunities,” in
ACM SIGMOD, 2012.

[40] V. Stodden, P. Guo, and Z. Ma, “Toward reproducible computational
research: An empirical analysis of data and code policy adoption by
journals,” in PloS one, vol. 8, 2013.

[41] D. Penny, “Nature Reproducibility survey,” May 2016. [Online].
Available: https://figshare.com/articles/Nature Reproducibility survey/
3394951

[42] T. Malik, “GeotrustHub,” https://geotrusthub.org/, 2017, [Online; ac-
cessed 10-Sep-2017].

383383


