Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University
Visiting Faculty, CSE, IIT, Delhi

Network namespaces

« A process (or group of processes) that no longer has
access to all the host system’s “native” network interfaces

« Similar to a process that has executed the chroot() system call no
longer has access to the full filesystem.

* E.g. A virtual network

 virtual Ethernet interfaces
e virtual Ethernet links.

Host network stack

OSI 5-layer model of the Internet
Application

(e.g. video streaming)

Transport
(e.g. TCP, UDP)

Network
(e.g. routing)

Link
(e.g. scheduling)

Physical
(e.g. OFDM)

Network interface

* is a hardware component, typically a circuit board or chip, which is
installed on a computer so it can connect to a network

* Unique, unchangeable MAC addresses, also known as physical
network addresses, are assigned to NICs.

> ifconfig 1lo

lo: flags=73<UP,LOOPBACK, RUNNING>
inet 127.0.0.1
netmask 255.0.0.0

> ifconfig ethO
ethO: inet 192.168.1.12
netmask 255.255.255.0

> ifconfig ethO
ethO: inet 192.168.1.35
netmask 255.255.255.0

Slide credit: CSE

Network namespaces

* A network namespace is a logical copy of the network stack from the host

system.
* Each namespace has its own IP addresses, network interfaces, routing tables, etc.

* The default or global namespace is the one in which the host system physical
interfaces exist.

* A virtual network interface (VIF) is

an abstract virtualized representation Client

Server

of a computer network interface that

A

\ 4

may or may not correspond directly to

N

Application

a hetwork interface controller.

Virtual interface

N

Uses of network namespaces

* |solate processes from the network

e Secure network applications:
* A process with a socket connection clone()s into a new network namespace
* Child inherits socket file descriptor but establish other network connections

* Instead of clone()ing, a networked process can send a socket fd to an isolated
process via a UNIX socket

* Create virtual network devices, e.g. containers or virtual machines
that appear as separate devices on the network

Network namespaces

Network namespace management: ip-netns

Network namespaces enable isolation of network resources

ip netns add nsl
* Creates a new network napespace

By default, a process inherits its network namespace from its parent.
* Initially all the processes share the same default network namespace from the init process.

Creates a named bind mount:
/var/run/netns/nsl
* This allows the network namespace to persist without processes
* Allows setup and manipulation of the namespace before processes are launched

Network namespaces have no
communication

* Even local loopback must be explicitly enabled!

Execute command in namespace

ip netns exec nsl bash
ip link set dev lo up

Validate: 1ip netns exec nsl ip address
Test: 1p neths exec nsl ping 127.0.0.1

Enable namespace’s loopback interface

Can also run command directly, e.g.:
ip netns exec nsl ip link set dev lo up

Network Namespaces

We can create virtual network interfaces to connect container to
host

ip link add vethO_1 type veth peer name vethl_0

Establishes two virtual ethernet ports, connected by a virtual cable

ip link set veth1l_0 netns nsl

assign the virtual device to your namespace

ip netns exec nsl ifconfig vethl_010.1.1.1/24 up

ifconfig veth0_1 10.1.1.2/24 up

Can similarly connect two containers

All veth interfaces are on the same subnet, allowing
communication between both containers and the host

This seems inefficient ...\Why?

netns nsl netns ns2

S S

10.1.1.1/24 10.1.1.3/24

vethl 0 veth2 0

vethO_ 1

192.168.1.12/24

Network Namespaces

netns nsl netns ns2

* We can create virtual network interfaces to connect container to host X N
ip link add veth0_1 type veth peer name vethl_0
* Establishes two virtual ethernet ports, connected by a virtual cable 10.1.1.1/24 10.1.1.3/24
ip link set veth1_0 netns nsl vethl O veth2 0
ip netns exec nsl ifconfig veth1_010.1.1.1/24 up
ifconfig veth0_1 10.1.1.2/24 up

* Cansimilarly connect two containers

vethO_ 1

* All veth interfaces are on the same subnet, allowing communication
between both containers and the host

* This seems inefficient ... for n containers, we need 2*(";’1) virtual interfaces
* Is there a better way?

* Question: if we have several physical devices, how do we connect them?

g

192.168.1.12/24

Network namespace bridges

netns nsl netns ns2
\ \
* Answer: we use a switch to connect devices!
10.1.1.1/24 10.1.1.2/24
* Avethis like a virtual ethernet port vethl —

* A bridge is like a virtual switch
vethlbr veth2br

brO
ip link add name br0O type bridge

ip link set br0 up vethObr

ip link set vethlbr master br0
vethO

)

* Now for n containers, we need 2(n+1) veths, 1 bridge

Network namespaces

nsll nsl2 ns21

* Q: How can we create multiple, isolated networks br0 o brl
iptables

of containers?
* A: Use multiple bridges

e Q: How can we enable communication between
these networks?

* A: Connect them via route(8) rules

* Use iptables(8) rules to restrict traffic between
networks based on port, IP, etc.

Connecting to outside

How can a container reach the outside world?

Host network address translation (NAT) with a veth as a gateway

* Add a route from nsl to outside networks using vethO as the gateway
ip netns exec nsl \

ip route add default via 10.1.1.10

* Enable IP traffic forwarding
cat /proc/sys/net/ipv4/ip forward

* Enable NAT so traffic from the nsl subnet appears to come from the host subnet
iptables --table nat -A POSTROUTING \
-s 10.1.1.0/24 -j MASQUERADE

* Allow incoming and outgoing traffic to be forwarded over vethO
iptables -A FORWARD -i vethO -j ACCEPT

iptables -A FORWARD -o vethO -j ACCEPT

netns nsl

-

10.1.1.11/24

vethl

vethO

brO

Connecting from outside

What if the container hosts a service that needs to be accessible
from the outside world?

Port forwarding

* iptables can be used to forward inbound traffic on a specified port to a
container

* The physical network interface can be provided multiple IP addresses

e Use port forwarding rules to forward traffic to different containers based
on requested IP

» Useful for multiple containers providing services on the same port

Complex Network Topologies

* Putting this all together enables composition of complex
container networks

* Consider a container running a web application on port
8080

* The web application uses a database server and log

server
* A second web application, on the same port, is added

* We can assign a second address to ethO
* Then forward it with iptables to the second application

db log

brl
10.1.20.100/24

vethl 1
10.1.20.10/24

webappl

10.1.10.11/24
vethl O

e S

192.168.1.12/24
192.168.1.13/24

db log

brl
10.2.20.100/24

vethl 1
10.2.20.10/24

webappl

10.2.10.11/24
vethl O

vethO_1

S

Cgroups

Cgroups

* cgroups provides a mechanism for managing resources of a group of
processes

* System Resources: CPU time, memory, disk, and network bandwidth

* |s - /sys/fs/cgroup/systemd/

How are cgroups used?

e Consider a datacenter with
* >100,000 servers
* Many thousands of services
* Want to limit failure domains

Sample workload of a famous website

e Core workload
* Web requests

* Non-core services
* Metric collection
* Cron jobs
* Chef
 atop (logging mode)

* Ad-hoc querying/debugging
e tcpdump
e atop

Limits on the workload

* Core workload - Essentially unlimited
* Web requests

* Non-core services — Memory limit: 1GiB, 10 write: 1MBps
* Metric collection
* Cron jobs
* Chef
 atop (logging mode)

» Ad-hoc querying/debugging ——— Mem limit: 2GiB Max tasks: 1000
e tcpdump
e atop

Cgroups

* Two principle components:
* A mechanism for hierarchically grouping processes

* A set of controllers (kernel components) that manage, control, or monitor
processes in cgroups

* Interface is via a pseudo-filesystem

e Cgroup manipulation takes form of filesystem operations, which
might be done:
* Via shell commands
* Programmatically
* Via management daemon (e.g., systemd)
* Via your container framework’s tools (e.g., LXC, Docker)

What do cgroups allow us to do

* Limit resource usage of group
* E.g., limit % of CPU available to group;
* limit amount of memory that group can use

* Prioritize group for resource allocation
e E.g., favor the group for network bandwidth

* Resource accounting
* Measure resources used by processes

* Freeze a group
* Freeze, restore, and checkpoint a group

Terminology

* Control group: a group of processes that are bound together for
purpose of resource management

* (Resource) controller: kernel component that controls or monitors
processes in a cgroup
e E.g., memory controller limits memory usage; cpu controller limits CPU usage

e Cgroups are arranged in a hierarchy
e Each cgroup can have zero or more child cgroups
 Child cgroups inherit control settings from parent

cgroupsvl

e cgroupvl has a hierarchy per-resource, for example:
* % Is /sys/fs/cgroup
* cpu/ cpuacct/ cpuset/ devices/ freezer/ memory/ net_cls/ pids/

* Each resource hierarchy contains cgroups for this resource:
* % find /sys/fs/cgroup/pids -type d

 /sys/fs/cgroup/pids/background.slice
/sys/fs/cgroup/pids/background.slice/async.slice
/sys/fs/cgroup/pids/workload.slice

cgroupsvl

 Separate hierarchy/cgroups for each resource

* Even if they have the same name, cgroups for each resource are
distinct

e cgroups can be nested inside each other

[sys/fs/cgroup

resource A resource B resource C

cgroup 1 cgroup 3 cgroup 5

cgroup 2 cgroup 4 cgroup 6

cgroupsvl

Limits and accounting are performed per-cgroup
* |f resource B is “memory”, you can set memory.limit_in_bytes in cgroup 3

[sys/fs/cgroup /sys/fs/cgroup
resource A resource B MERBLIFES resource A resource B resource C
cgroup cgroup 3 cgroup 3 cgroup 1 cgroup 3 cgroup 5
/ N\ / N\ / N\ 7\ / \ 7\
pd1 pid2 pid3 pid4 pid2 pid3 pd1 pid2 pid3 pid4 pid2 pid3

* One PID is in exactly one cgroup per resource

PID 2 explicitly assigned in separate cgroups for resource A and C

Not assigned for resource B, so in the root cgroup

cgroupsvl

~ blkio — bg — A ——— throttle_write_bps_device=1MiB/s

/sys/fs/cgroup —

bg — A ——— memory.limit_in_bytes=1G
L > memory {

adhoc — B — memory.limit_in_bytes=2G

L» pids — adhoc — B —— pids.max=1000

Cgroups

e cgroupv2 has a unified hierarchy, for example:
* % Is /sys/fs/cgroup
* background.slice/ workload.slice/

e Each cgroup can support multiple resource domains:
* % Is /sys/fs/cgroup/background.slice
* async.slice/ foo.mount/ cgroup.subtree control
* memory.high memory.max pids.current pids.max

CEroupsv’

e cgroups are “global” now — not limited to one resource
e Resources are now opt-in for cgroups

/sys/fs/cgroup

P N

cgroup1 cgroup3 cgroup 5

cgroup 2 cgroup4 cgroup 6

cgroups vZ2 Vs vl

e Unified hierarchy — resources apply to cgroups now
e Granularity at TGID (PID), not TID level
* Focus on simplicity/clarity over ultimate flexibility

io.max="wbps=1MiB/s"
gl
4»bg-{: memory.high/max=1G
+memory
cgroup.subtree_control-{:

+io

memory .high/max=2G
s
pids.max=1000

— adhoc { +mem0ry
cgroup.subtree_control-{:

+pids

Determining the between vl and v2

* You may be on a distro that uses cgroups v1 by default; if so, you
need to reboot....

* Because we can’t simultaneously use a controller in both vl and v2

* |If this shows a value > 1, then you need to reboot:
» S grep -c cgroup /proc/mounts # Count cgroup mounts

e Use kernel boot parameter, cgroup_no_v1:
e cgroup_no_vl=all = disable all vl controllers

Filesystem interface

e Cgroup filesystem directory structure defines cgroups + cgroup
hierarchy

* |l.e., use mkdir(2) / rmdir(2) (or equivalent shell commands) to create cgroups

e Each subdirectory contains automatically created files
* Some files are used to manage the cgroup itself
* Other files are controller-specific

* Files in cgroup are used to:
* Define/display membership of cgroup
* Control behavior of processes in cgroup
* Expose information about processes in cgroup (e.g., resource usage stats)

Example

* cgd-demo.c

