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PID Namespaces in Docker
• docker run –d –name server1 busybox sh –c “nc -l –p 0.0.0.0:7070”

• docker run –d –name server2 busybox sh –c “nc -l –p 0.0.0.0:8080”

OR

• docker run –t –d busybox sh

• docker run –t –d busybox sh

• docker ps -a

• docker exec server1 ps –ef

Will see two processes
• docker exec server2 ps –ef

Will see two processes

• ps –ef

<Stop and delete server1>

• docker run –d –pid host –name server1 busybox sh –c “nc -1 –p 0.0.0.0:7070”

• docker exec server1 ps –ef

/proc from the host is mounted



Defaults  for / and unshare()

Default propagation type is for a new mount point:
• If the mount point has a parent (i.e., it is a non-root mount point) and 

the propagation type of the parent is MS_SHARED, then the 
propagation type of the new mount is also MS_SHARED.
• Otherwise, the propagation type of the new mount is MS_PRIVATE.

• What is default for root?



Defaults  for / and unshare()

Default propagation type is for a new mount point:
• If the mount point has a parent (i.e., it is a non-root mount point) and the 

propagation type of the parent is MS_SHARED, then the propagation type of the 
new mount is also MS_SHARED.
• Otherwise, the propagation type of the new mount is MS_PRIVATE.

• What is default for root?
• systemd sets the propagation type of all mount points to MS_SHARED.

• What does unshare() assume as default?
• Opposite behavior. Why?
• mount --make-rprivate / 

• To prevent: unshare -m --propagation unchanged <cmd>



Creating a basic container
int main(int argc, char *argv[]) {

int cpid = fork();

if (cpid == -1)

{ errExit("fork"); }

if (cpid == 0)

{

unshare(CLONE_NEWNS); // (1) Create a a new mount namespace.

mount("", "/", NULL, MS_SLAVE |MS_REC, NULL); // (2) Why SLAVE?

mount(rootfs, rootfs, NULL, MS_BIND |MS_REC, NULL); // (3) Why bind mount to itself?

chdir(rootfs); // (4) Enter the rootfs directory. 

mount(rootfs, "/", NULL, MS_MOVE, NULL); // (5) Move mount point rootfs from itself to “/”

chroot("."); // (6) Change the root directory to rootfs.

chdir("/"); // (7) Safe practice

mount("", "/", NULL, MS_SHARED |MS_REC, NULL); // (8) changes in the container will be propagated to its children if any

mount("proc", "/proc", "proc", MS_NOSUID |MS_NOEXEC |MS_NODEV, NULL); // (9) Mount procfs for the container.

execv(argv[1], &argv[1]); }

else {

if (waitpid(cpid, NULL, 0) == -1) { errExit("waitpid"); } }

return 0;

}

https://man7.org/linux/man-pages/man5/proc.5.html


Break from container
• Exploit.py
import os

if not os.path.exists("chroot"):
os.mkdir("chroot")

os.chroot("chroot")

for _ in range(50):   # some arbitrary number
os.chdir("..")

os.chroot(".")
os.system("/bin/bash")



Break from container

# mkdir test
# cp /bin /usr /lib /lib64 test
# sudo unshare --mount --pid --user --map-root-user --fork --mount-
proc chroot test sh -c "mount -t proc proc /proc && bash”
# python exploit.py
# ls



Do we still need chroot?

Figure credit: Julia Evans



Pivot root

• pivot_root(SYS_pivot_root, const char *new_root, const char 
*put_old) changes the root mount in the mount namespace of the 
calling process. 
• Moves the root mount to the directory put_old and makes new_root the new 

root mount.
• pivot_root() does not change the caller's current working directory (unless it 

is on the old root directory), and thus it should be followed by a chdir("/") 
call.

• MS_MOVE + chroot() = pivot_root()



Pivot_root Example

• sudo unshare --mount --pid --user --map-root-user --fork --mount-
proc bash
• mount --rbind test test
• cd test
• mkdir oldroot
• pivot_root . oldroot
• umount –l oldroot



Properties for container storage

• Directories/Images are part of a container
• Directories/Images are big in size. 
• Ubuntu: 72MB
• Nginx: 133MB

• Would ideally like to share images across containers. 
• Use CoW when writing to any image



Union Mounts/Union File System

• Unification of filesystems is the concept of mounting several 
filesystems on a single mount point, with the resulting mount 
showing the logical combination of all the filesystems.
• Traditionally, when a filesystem is mounted on a directory, the existing 

contents of the directory are masked, and the content of the latest 
mounted filesystem is shown. 
• These masked files are available only after the mounted filesystem is 

unmounted. 
• Even though these files exist, they are inaccessible to the user. 

• Union mount overcomes this by providing access to all directories and 
files present in the directory, even after a mount.



# mount /dev/sdb /mnt
# ls /mnt
dir1 file1 link1 
# mount --union /dev/sdc /mnt
# ls /mnt
dir1 dir4 file1 link1
# umount /mnt
# ls /mnt
dir1 file1 link1



Examples: UnionFS, AUFS, OverlayFS
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Reads and Writes in UFS

• Read from the top-most layer where it exists. 
• If not created or changed on the top layer, the read 
will fall through the layers until it reaches a layer 
where that file does exist. 

• File changes and deletions work by modifying 
the top layer
• When a file is deleted, a delete record is written to the top layer, which 

overshadows any versions of that file on lower layers. 
• When a file is changed, that change is written to the top layer, which again 

shadows any versions of that file on lower layers. 

134 CHAPTER 7 Packaging software in images

When you read a file from a union file sys-
tem, that file will be read from the top-most
layer where it exists. If a file was not created
or changed on the top layer, the read will fall
through the layers until it reaches a layer
where that file does exist. This is illustrated in
figure 7.3.

 All this layer functionality is hidden by the
union file system. No special actions need to
be taken by the software running in a con-
tainer to take advantage of these features.
Understanding layers where files were added
covers one of three types of file system writes. The other two are deletions and file
changes.

 Like additions, both file changes and deletions work by modifying the top layer.
When a file is deleted, a delete record is written to the top layer, which overshadows
any versions of that file on lower layers. When a file is changed, that change is written
to the top layer, which again shadows any versions of that file on lower layers. The
changes made to the file system of a container are listed with the docker diff com-
mand you used earlier in the chapter:

docker diff mod_ubuntu

This command will produce the output:

A /mychange

The A in this case indicates that the file was added. Run the next two commands to see
how a file deletion is recorded:

docker run --name mod_busybox_delete busybox:latest rm /etc/profile
docker diff mod_busybox_delete

This time the output will have two rows:

C /etc
D /etc/profile

The D indicates a deletion, but this time the parent folder of the file was also included.
The C indicates that it was changed. The next two commands demonstrate a file
change:

docker run --name mod_busybox_change busybox:latest touch /etc/profile
docker diff mod_busybox_change

The diff subcommand will show two changes:

C /etc
C /etc/profile

Layer 0

Layer 1

Layer 2

Files visible
to a container

A

A

A

Figure 7.3 Reading files that are located 
on different layers

Licensed to Stephanie Bernal <nordicka.n@gmail.com>



Docker images

• images are similar to VM images, except that they consist of a series of 
layers. 
• Every layer is a set of files. The layers get stacked with files in the upper 

layers superseding files in the layers below them. 
• The number of layers in a single image ranges from one to several dozens.

• Similarly to git, the layers are identified by fingerprints of their content. 
• Different images often share layers, which provides significant space and 

I/O transfer savings. 
• A layer in a Docker image often represents a layer in the corresponding 

software stack. 
• For example, an image could consist of a Linux distribution layer, a libraries layer, a 

middleware layer, and an application layer. 

influence the choice of an appropriate storage solution
for Docker containers (§III).

• We conduct a preliminary evaluation of the introduced
dimensions and analyze their impact on performance and
stability (§IV).

We found that, for example, for read-intensive workloads,
Aufs and Overlay2 are a good choice, while Btrfs can work
well in deployments that experience a more diverse set of
workloads. Device-mapper has a stable codebase but its perfor-
mance is typically low and highly susceptible to the underlying
storage speed. These and other observations can serve as a
starting point for future work on storage management for
Docker containers.

II. DOCKER

Docker consists of a Command Line Tool (CLI) and a
daemon (sometimes called engine) which continuously runs
in the background of a dockerized system (Figure 1). The
Docker daemon receives user commands from the CLI to
build new or pull existing images, start or stop containers from
images, delete containers or images, and other actions. Next,
we introduce the relevant background on Docker images and
its concept of storage drivers in more detail.

A. Docker Images

Modern software relies heavily on the availability of a
file system interface for its processes (after all, “Everything
is a file” in UNIX-derived OSs [12]). Files not only store
binaries, configuration files, and data, but also provide access
to the system information and configuration (e.g., /proc and
/sys file systems). Docker therefore dynamically creates a
file system for a container to execute from. Docker file system
images are similar to VM images, except that they consist of
a series of layers. Every layer is a set of files. The layers get
stacked with files in the upper layers superseding files in the
layers below them. For example, in Figure 1, if the same file
resides in layers L0 and L1, then containers C1 and C2 only
see the version from L1. However, all files in L0 that do not
exist in the upper layers will be seen by containers C1 and
C2. In almost all cases, a container’s file system is stored in
the local storage device of the node in which it executes.

The number of layers in a single image ranges from one
to several dozens [10]. Similarly to git [13], the layers are
identified by fingerprints of their content. Different images
often share layers, which provides significant space and I/O
transfer savings. A layer in a Docker image often represents
a layer in the corresponding software stack. For example, an
image could consist of a Linux distribution layer, a libraries
layer, a middleware layer, and an application layer.

A container image is read-only, with changes to its file sys-
tem during execution stored separately. To create a container
from an image, Docker creates an additional writeable layer on
top of the image with which the container interacts. When the
container updates a file, the file is copied to the writable layer
and only the copy is updated (copy-on-write). Unless the user

I I I

C1 C2 C3Docker CLI

L L1

L0

Storage

L

Driver
Driver

Execution

DaemonDocker

Fig. 1: Docker high-level design. C stands for Container, I for
Image, and L for Layer. Three containers are created; C1 and
C2 use images that share two layers.

saves the changes as a new layer (and hence a new image),
the changes are discarded when the container is removed.

To store data persistently beyond the container removal,
users can attach one or more file system volumes using a
volume driver which provides the container access to data
using protocols such as NFS and iSCSI. In this study, our focus
is on challenges specific to configuring the local “ephemeral”
file system for storing and accessing container images.

Users exchange images via a Docker registry service which
typically runs on an independent machine. For example,
Docker Hub is a popular registry service storing over 400,000
public images [14]. Docker clients cache images locally and
therefore can start any number of containers from an image
after pulling it only once. In this paper we assume that images
are already pulled from the registry and focus on the startup
and shutdown performance of containers.

Docker containers are often managed by high-level frame-
works like Docker Swarm [15], Kubernetes [16], and oth-
ers [17]. Furthermore, many products use Docker containers as
a basic primitive for their workflows [18], [19]. In this paper,
we generate workloads at the Docker level, not employing
orchestration frameworks or complex workflows. We plan to
extend our evaluation in future.

B. Storage Drivers

Docker uses a variety of pluggable storage drivers1 to
manage the makeup and granularity of the layers and how
changes to layers are saved. A storage driver is responsible
for preparing a file system for a container. In this section, we
briefly describe the available Docker storage drivers and their
key differentiating features.

VFS: This simple driver does not save file updates
separately from an image via CoW, but instead creates a
complete copy of the image for each newly started container.
It can therefore run on top of any file system. While this driver
is not recommended for production due to its inefficiency, we
discuss it here and in our evaluation since it is very stable and
provides a good baseline.

Aufs: Another Union File System [6] is a union file
system that takes multiple directories, referred to as branches,

1Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.



Images

• A container image is read-only, with changes to its file system during 
execution stored separately. 
• To create a container from an image, Docker creates an additional 

writeable layer on top of the image with which the container 
interacts. 
• When the container updates a file, the file is copied to the writable 

layer and only the copy is updated (copy-on-write). 
• Unless the user saves the changes as a new layer (and hence a new 

image), the changes are discarded when the container is removed. 



Docker design

• containerd starts a container from a Docker image

• One image can launch multiple containers

• An image is built from a Dockerfile that specifies the image’s 
attributes, files, commands, etc.

• Consider the following analogy:

Program Executable Binary Process
Dockerfile Image Container



Storage Drivers

• Storage drivers are sometimes also called graphdrivers because they 
maintain the graph (tree) of Docker layers and images. 
• A storage driver is responsible for preparing a file system for a 

container. 
• Several: 
• VFS/unionfs
• AUFS
• Overlay
• BtrFS
• ZFS

Which storage driver to use?



Docker Union File Systems
• UnionFS

• Original. Not actively developed anymore.
• https://unionfs.filesystems.org/.

• aufs
• A re-implemenation of original UnionFS that added many new features, but was rejected for merging into mainline Linux kernel.
• Default driver for Docker on Ubuntu/Debian but was replaced by OverlayFS (for Linux kernel >4.0). 

• OverlayFS
• Included in Linux Kernel since 3.18 (26 October 2014). 
• Filesystem used by default overlay2 Docker driver. 
• Generally has better performance then aufs and has some nice features such as page cache sharing.

• ZFS
• ZFS is union filesystem created by Sun Microsystems (now Oracle). 
• Some interesting features like hierarchical checksumming, native handling of snapshots and backup/replication or native data compression and 

deduplication. 
• Maintained by Oracle, it has non-OSS friendly license (CDDL) and therefore cannot be shipped as part of Linux kernel. 

• Btrfs
• Btrfs is joint project of multiple companies - including SUSE, WD or Facebook - published under GPL license and is a part of Linux kernel. 
• Btrfs is a default filesystem of Fedora 33. It also has some useful features such as block-level operations, defragmentation, writeable snapshots 

and a lot more. 

https://unionfs.filesystems.org/


Storage Driver Comparison

VFS
• This simple driver does not save 

file updates separately from an 
image via CoW, but instead creates 
a complete copy of the image for 
each newly started container. It 
can therefore run on top of any file 
system. 
• + stable
• - inefficient

Aufs (Another Union file system)
• Takes multiple directories and 

stacks them on top of each other 
to provide a single unified view at a 
single mount point. Aufs performs 
file-level CoW, storing updated 
versions of files in upper branches. 
To support Docker, each branch 
maps to an image layer 
• - Not so much stable
• + Efficient but depends on multiple 

factors



OverlayFS
• Yet another implementation of a 

union file system 
• Available for Linux distributions

• OK on efficiency and stability

Btrfs
• Modern CoW file system based 

on a CoW-friendly version of a B-
tree 
• Natively supports CoW and does 

not require an underlying file 
system 
• + IO performance
• + Space efficiency
• - not so stable
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Any changes that you make to the file system inside a container will be written as new
layers that are owned by the container that created them.

 Before you work with real software, the next section details the typical workflow
with a Hello World example. 

7.1.1 Packaging Hello World
The basic workflow for building an image from a container includes three steps. First,
you need to create a container from an existing image. You will choose the image
based on what you want to be included with the new finished image and the tools you
will need to make the changes.

 The second step is to modify the file system of the container. These changes will be
written to a new layer on the union file system for the container. We’ll revisit the rela-
tionship between images, layers, and repositories later in this chapter.

 Once the changes have been made, the last step is to commit those changes. Once
the changes are committed, you’ll be able to create new containers from the resulting
image. Figure 7.1 illustrates this workflow.

 With these steps in mind, work through the following commands to create a new
image named hw_image.

docker run --name hw_container \
    ubuntu:latest \
    touch /HelloWorld 

docker commit hw_container hw_image 

docker rm -vf hw_container 

docker run --rm \
    hw_image \
    ls -l /HelloWorld 

If that seems stunningly simple, you should know that it does become a bit more
nuanced as the images you produce become more sophisticated, but the basic steps
will always be the same.

 Now that you have an idea of the workflow, you should try to build a new image
with real software. In this case, you’ll be packaging a program called Git.

Docker creates
a new container
and UFS mount

of the image

docker images
# list includes “image”

exit

docker commit
container image

A new repository
named image

is created

The container is
stopped and the

user is returned to
the host terminal

The file is
copied to a

new UFS layer

docker run --name
container ... /bin/sh

touch
/HelloWorld.txt

Figure 7.1 Building an image from a container

Modify file 
in container

Commit
change to

new image

Remove changed 
container

Examine file in 
new container

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Figure credit: Docker-in-action



docker run --name mod_ubuntu ubuntu:latest touch /mychange

133Going deep on Docker images and layers

■ Authors need to know the impact that adding, changing, and deleting files have
on resulting images.

■ Authors need have a solid understanding of the relationship between layers and
how layers relate to images, repositories, and tags.

Start by considering a simple example. Suppose you want to make a single change to an
existing image. In this case the image is ubuntu:latest, and you want to add a file named
mychange to the root directory. You should use the following command to do this:

docker run --name mod_ubuntu ubuntu:latest touch /mychange

The resulting container (named mod_ubuntu) will be stopped but will have written
that single change to its file system. As discussed in chapters 3 and 4, the root file sys-
tem is provided by the image that the container was started from. That file system is
implemented with something called a union file system. 

 A union file system is made up of layers. Each time a change is made to a union file
system, that change is recorded on a new layer on top of all of the others. The “union”
of all of those layers, or top-down view, is what the container (and user) sees when
accessing the file system. Figure 7.2 illustrates the two perspectives for this example.

Union file system mount:
Layered perspective

Union file system mount:
Perspective from the container/mychange is written to the

union file system mount
created from ubuntu:latest

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest

touch /mychange

Files are read by the container
from its union file system mount

/mychange is written to a
new layer that depends

on ubuntu:latest

All reads from unchanged files
are read from the layers that
make up the original image

By looking at the union file system from the side—the  perspective of its layers—you can begin to
understand the relationship between different images and how file changes impact image size.

mod_ubuntu write layer

ubuntu:latest

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest

touch /mychange

/mychange

other
files

Figure 7.2 A simple file write example on a union file system from two perspectives

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Figure credit: Docker-in-action



Volumes

• A volume is a mount point on the container’s 
directory tree where a portion of the host 
directory tree has been mounted.

• Volumes allow containers to share files with 
the host or other containers. 

• Volumes are parts of the host file system that 
Docker mounts into containers at specified 
locations. 

• There are two types of volumes: Docker-
managed volumes that are located in the 
Docker part of the host file system and bind 
mount volumes that are located anywhere on 
the host file system. • A container with a mounted volume and 

writeable top layer of the union file system

Figure credit: Docker-in-action



Docker Volumes

• Containers, by default, do not have persistent storage

• Bind-mount a directory into a container:

docker run –v hostdir:containerdir

• Read-only: hostdir:containerdir:ro

• Docker can also create named volumes enabling persistent, shared storage among containers

• Create: docker volume create <name>

• List: docker volume ls

• Mount:

docker run --mount source=<name>,target=<containerdir>


