Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University
Visiting Faculty, CSE, IIT, Delhi

PID Namespaces in Docker

* docker run —d —name serverl busybox sh —c “nc -| —p 0.0.0.0:7070”
* docker run —d —name server2 busybox sh —c “nc -| —p 0.0.0.0:8080”
OR

* docker run —t —d busybox sh

* docker run —t —d busybox sh

* docker ps -a

* docker exec serverl ps —ef

Will see two processes

* docker exec server2 ps —ef

Will see two processes

* ps—ef

<Stop and delete serverl>

* docker run —d —pid host —name serverl busybox sh —c “nc -1 —p 0.0.0.0:7070”
* docker exec serverl ps —ef

/proc from the host is mounted

Defaults for / and unshare()

Default propagation type is for a new mount point:

* If the mount point has a parent (i.e., it is a non-root mount point) and
the propagation type of the parent is MS_SHARED, then the
propagation type of the new mount is also MS_SHARED.

* Otherwise, the propagation type of the new mount is MS_PRIVATE.

e What is default for root?

Defaults for / and unshare()

Default propagation type is for a new mount point:

* If the mount point has a parent (i.e., it is a non-root mount point) and the
propagation type of the parent is MS_SHARED, then the propagation type of the
new mount is also MS_SHARED.

e Otherwise, the propagation type of the new mount is MS_PRIVATE.

 What is default for root?
* systemd sets the propagation type of all mount points to MS_SHARED.

 What does unshare() assume as default?

* Opposite behavior. Why?
* mount --make-rprivate /

* To prevent: unshare -m --propagation unchanged <cmd>

Creating a basic container

int main(int argc, char *argv[]) {
int cpid = fork();

if (cpid ==-1)

{ errExit("fork"); }

if (cpid == 0)

{

unshare(CLONE_NEWNS); Create a a new mount namespace.

mount("", "/", NULL, MS_SLAVE | MS_REC, NULL); Why SLAVE?

mount(rootfs, rootfs, NULL, MS_BIND | MS_REC, NULL); Why bind mount to itself?

chdir(rootfs); Enter the rootfs directory.

mount(rootfs, "/", NULL, MS_MOVE, NULL); Move mount point rootfs from itself to “/”

chroot("."); Change the root directory to rootfs.

chdir("/"); Safe practice

mount("","/", NULL, MS_SHARED | MS_REC, NULL); changes in the container will be propagated to its children if any
mount("proc", "/proc", "proc", MS_NOSUID | MS_NOEXEC | MS_NODEV, NULL); Mount procfs for the container.

execv(argv[1], &argv[1]); }

else {

if (waitpid(cpid, NULL, 0) == -1) { errExit("waitpid"); } }
return O;

}

https://man7.org/linux/man-pages/man5/proc.5.html

Break from container

e Exploit.py
import os

if not os.path.exists("chroot"):
os.mkdir("chroot")
os.chroot("chroot")

for _inrange(50): # some arbitrary number
os.chdir("..")

os.chroot(".")
os.system("/bin/bash")

Break from container

mkdir test
cp /bin /usr /lib /lib64 test

sudo unshare --mount --pid --user --map-root-user --fork --mount-
proc chroot test sh -c "mount -t proc proc /proc && bash”

python exploit.py
s

Do we still need chroot?

programs can break
out of a chroot

whole all these files are redis you can unmount
filesystem I~ still there! A root container |~ the old ‘Fi(CSBSfCM
directory

process can access so it's impossible to

redis them if it wants i
container h " ’ access if.

directory

Containers use pivot_root instead of chroot.

Figure credit: Julia Evans

Pivot root

 pivot_root(SYS_pivot_root, const char *new_root, const char
*put_old) changes the root mount in the mount namespace of the
calling process.

* Moves the root mount to the directory put_old and makes new_root the new
root mount.

* pivot_root() does not change the caller's current working directory (unless it
is on the old root directory), and thus it should be followed by a chdir("/")
call.

* MS_MOVE + chroot() = pivot_root()

Pivot_root Example

* sudo unshare --mount --pid --user --map-root-user --fork --mount-
proc bash

* mount --rbind test test
* cd test

* mkdir oldroot

* pivot_root . oldroot

* umount —| oldroot

Properties for container storage

* Directories/Images are part of a container

* Directories/Images are big in size.
 Ubuntu: 72MB
* Nginx: 133MB

* Would ideally like to share images across containers.
* Use CoW when writing to any image

Union Mounts/Union File System

 Unification of filesystems is the concept of mounting several
filesystems on a single mount point, with the resulting mount
showing the logical combination of all the filesystems.

* Traditionally, when a filesystem is mounted on a directory, the existing
contents of the directory are masked, and the content of the latest
mounted filesystem is shown.

* These masked files are available only after the mounted filesystem is
unmounted.

* Even though these files exist, they are inaccessible to the user.

* Union mount overcomes this by providing access to all directories and
files present in the directory, even after a mount.

mount /dev/sdb /mnt

#1s /mnt
dirl filel link1

mount --union /dev/sdc /mnt

#1s /mnt

dirl dird filel link1
umount /mnt
#1s /mnt

dirl filel link1

Filesystem on /dev/sdb
/dev/sdb
— dirl

L— file bl
— filel

l _1inkl -> filel

Filesystem on /dev/sdc

/dev/sdc

dirl

dir4d

linkl

L— file ¢l

-> dir4d

Resultant flesystem after union mounts

/mnt
R o e % i k
|— file cl
—— dir4
L filel
— 1linkl -> dir4

Examples: UnionFS, AUFS, OverlayFS

Ifoo

b

£
@
A
7
>
v
2
w
c
2
c
== |

-

Here are 2 files “imagel” & “image2” formatted as a filesystems

/tmp/imagel /tmp/image2

File System File System

dd if=/dev/zero of=/tmp/imagel bs=1024 count=1024
dd if=/dev/zero of=/tmp/image2 bs=1024 count=1024
mkfs —t ext4 /tmp/imagel
mkfs —t ext4 /tmp/image2

Accessing filesystems on these “imagel” & “image2”

imagel image2

mkdir /tmp/mnt1 /tmp/mnt2
mount /tmp/imagel /tmp/mnt1
mount /tmp/image2 /tmp/mnt2

A

Mounting filesystems (files imagel and image2) on mount points mntl and mnt2 in

read-write mode allows files created and accessed via respective mount points.

* Directories are lists of files and subdirectories

Creating files in filesystems (“imagel” & “image2”)

imagel image2 mnt1
-

cat > /tmp/mnt1/filel « filel

Test - filel @ Y, \

cat > /tmp/mnt2/file2
Test - file2
umount /tmp/mnt1 ; umount /tmp/mnt2

Files filel, and file2 are created on file systems imagel, and image2 respectively

Mounting multiple filesystems on single mount point

/
e e LITP
imagel image2 test mnt
» file2
mkdir /tmp/test_mnt a1
mount /tmp/imagel /tmp/test_mnt \ /
mount /tmp/image2 /tmp/test_mnt \ 4
#Is /tmp/test_mnt
file2
umount /tmp/test_mnt
#ls
filel

umount /tmp/test_mnt
When two filesystems are mounted on a single mount point one after the other, only

files from the filesystem mounted last remain accessible via this mount point.

/
|

e e \N§ : n;

. 4)
imagel image2 AR mnt2
mount /tmp/imagel /tmp/mnt1 * filel « file2

mount —o ro /tmp/image2 /tmp/mnt2 \ y € 4

Union of multiple filesystems on single mount point

/
e e——mpEE—
. \/ I
imagel image2 mnt1 mnt2
- -
- " \ — "
* filel * file2

\ y €

mount —t autofs —o br:/tmp/mnt1:/tmp/mnt2 none /tmp/test mnt
cat /tmp/test_mnt/filel

Test — filel

cat /tmp/test_mnt/file2

Test — file2

Note that file2 is coming from an underlying read-only file system from image2
OR mnt2

Union of multiple filesystems on single mount point

(
e Ssupeasemstes e ST SENMPTEE T e e
\/ \
imagel image2 mntl mnt2
- -
» filel » file2
\ y € 4

Can we modify filel in test_mnt directory? Yes. As it is coming from an N
underlying read-write file system we can modify it — ——
#cat >> /tmp/test_mnt/filel :
Text added after ufs mounting %.'I 1
#cat /tmp/test_mnt/filel . f:|:2

Test — filel \
Test added after ufs mounting

Important - Can we modify file2 in test_mnt directory? Yes.
Though it is coming from an underlying read-only file system we
can still modify it. Union File Systems use a concept COW or copy
of write to implement it i.e. a copy of file2 would be created in
imagel which is read-write and that would override the file
coming from image2.

#cat >> /tmp/test_mnt/file2
Text added after ufs mounting
#cat /tmp/test_mnt/file2

Test — file2

»»»»»»

imagel image2

The modified copy of the file is internally written to the read-write
mounted filesystem here and the original read-only copy also
remains within the filesystem from imagel

#cat /tmp/mnt2/file2
Test — file2

#cat /tmp/mnt1/file2
Test — file2
Test added after ufs mounting

test mnt

» filel
» file2

Reads and Writes in UFS

 Read from the top-most layer where it exists. Jlesvisle |11)]
* If not created or changed on the top layer, the read P Rt R
will fall through the layers until it reaches a layer ' e VA
where that file does exist. \':\/L—a\yer1 ﬂ
* File changes and deletions work by modifying Lyo """" ﬁ """"""

the top layer

* When a file is deleted, a delete record is written to the top layer, which
overshadows any versions of that file on lower layers.

* When a file is changed, that change is written to the top layer, which again
shadows any versions of that file on lower layers.

vockercr | [l 8 [
Docker images siciun | A

on !Ii
Execution =
Driver

Storage Driver

. ;’mages are similar to VM images, except that they consist of a series of
ayers.

* Every layer is a set of files. The layers get stacked with files in the upper
layers superseding files in the layers below them.

 The number of layers in a single image ranges from one to several dozens.
* Similarly to git, the layers are identified by fingerprints of their content.

* Different images often share layers, which provides significant space and
/O transfer savings.

* A layer in a Docker image often represents a layer in the corresponding
software stack.

* For example, an image could consist of a Linux distribution layer, a libraries layer, a
middleware layer, and an application layer.

Images

* A container image is read-only, with changes to its file system during
execution stored separately.

* To create a container from an image, Docker creates an additional

writeable layer on top of the image with which the container
interacts.

 When the container updates a file, the file is copied to the writable
layer and only the copy is updated (copy-on-write).

e Unless the user saves the changes as a new layer (and hence a new
image), the changes are discarded when the container is removed.

Docker design

e containerd starts a container from a Docker image
* One image can launch multiple containers

* An image is built from a Dockerfile that specifies the image’s
attributes, files, commands, etc.

* Consider the following analogy:

Program Executable Binary Process

Dockerfile Image Container

Storage Drivers

» Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.

* A storage driver is responsible for preparing a file system for a
container.

e Several:
* VFS/unionfs
* AUFS
* Overlay
* BtrFS
e /FS

Which storage driver to use?

Docker Union File Systems

e UnionFS

* Original. Not actively developed anymore.
* https://unionfs.filesystems.org/.

* aufs
* Are-implemenation of original UnionFS that added many new features, but was rejected for merging into mainline Linux kernel.
* Default driver for Docker on Ubuntu/Debian but was replaced by OverlayFS (for Linux kernel >4.0).

* OverlayFS
* Included in Linux Kernel since 3.18 (26 October 2014).
* Filesystem used by default overlay2 Docker driver.
* Generally has better performance then aufs and has some nice features such as page cache sharing.

e ZFS
* ZFSis union filesystem created by Sun Microsystems (now Oracle).

. 3081e ilnteresting features like hierarchical checksumming, native handling of snapshots and backup/replication or native data compression and
eduplication.

* Maintained by Oracle, it has non-0SS friendly license (CDDL) and therefore cannot be shipped as part of Linux kernel.

* Btrfs is joint project of multiple companies - including SUSE, WD or Facebook - published under GPL license and is a part of Linux kernel.

. Btrgs i? a default filesystem of Fedora 33. It also has some useful features such as block-level operations, defragmentation, writeable snapshots
and a lot more.

https://unionfs.filesystems.org/

Storage Driver Comparison

VFS Aufs (Another Union file system)

* This simple driver does not save * Takes multiple directories and
file updates separately from an stacks them on top of each other
image via CoW, but instead creates to provide a single unified view at a
a complete copy of the image for single mount point. Aufs performs
each newly started container. It file-level CoW, storing updated
can therefore run on top of any file versions of files in upper branches.
system. To support Docker, each branch

maps to an image layer
* - Not so much stable

* + Efficient but depends on multiple
factors

e + stable
e - inefficient

OverlayFS

* Yet another implementation of a
union file system

e Available for Linux distributions

* OK on efficiency and stability

Btrfs

* Modern CoW file system based
on a CoW-friendly version of a B-
tree

* Natively supports CoW and does
not require an underlying file
system

* + |0 performance
* + Space efficiency
* - not so stable

docker run --name hw_container \
ubuntu:latest \
touch /HelloWorld

change to
new image

docker run --rm \
hw_image \

Comnﬁt|_" docker commit hw_container hw_image

docker rm -vf hw container

ls -1 /HelloWorld

docker run --name
container /bin/sh

docker images
list includes “image”

Figure credit: Docker-in-action

Docker creates

a new container

and UFS mount
of the image

A new repository
named image
is created

Modify file
in container

Remove changed
container

Examine file in
new container

touch
/HelloWorld.txt

The file is
copied to a
new UFS layer

/

exit

docker commit
container image

The container is
stopped and the
user is returned to
the host terminal

N

docker run --name mod ubuntu ubuntu:latest

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest
touch /mychange

/mychange is written to the
union file system mount
created from ubuntu:latest

touch /mychange

N

/" Union file system mount:
/' Perspective from the container,

1 \

/

/mychange

\

Container created with:

docker run
--name mod_ubuntu
ubuntu:latest
touch /mychange

Files are read by the container

from its union file system mount

/mychange is written to a
new layer that depends
on ubuntu:latest

\

ubuntu:latest

et

All reads from unchanged files
are read from the layers that
make up the original image

RSO LR g

By looking at the union file system from the side—the perspective of its layers—you can begin to
understand the relationship between different images and how file changes impact image size.

Figure credit: Docker-in-action

Volumes

* A volume is a mount point on the container’s
directory tree where a portion of the host
directory tree has been mounted.

* Volumes allow containers to share files with

the host or other containers. %

Write to /

* Volumes are parts of the host file system that progam | o | File system

Docker mounts into containers at specified -
|OcatI0nS. Write to /data

* There are two types of volumes: Docker-
managed volumes that are located in the “

Docker part of the host file system and bind

Container

/A

mount volumes that are located anywhere on

the host file system. * A container with a mounted volume and
writeable top layer of the union file system

Figure credit: Docker-in-action

Docker Volumes

Containers, by default, do not have persistent storage
* Bind-mount a directory into a container:
docker run —v hostdir:containerdir
* Read-only: hostdir:containerdir:ro
* Docker can also create named volumes enabling persistent, shared storage among containers
* Create: docker volume create <name>
* List: docker volume Is
* Mount:

docker run --mount source=<name>,target=<containerdir>

