Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University
Visiting Faculty, CSE, IIT, Delhi

PID Namespaces in Docker

* docker run —d —name serverl busybox sh —c “nc -| —p 0.0.0.0:7070”
* docker run —d —name server2 busybox sh —c “nc -| —p 0.0.0.0:8080”
OR

* docker run —t —d busybox sh

* docker run —t —d busybox sh

* docker ps -a

* docker exec serverl ps —ef

Will see two processes

* docker exec server2 ps —ef

Will see two processes

* ps—ef

<Stop and delete serverl>

* docker run —d —pid host —name serverl busybox sh —c “nc -1 —p 0.0.0.0:7070”
* docker exec serverl ps —ef

/proc from the host is mounted

User Namespace

* Allow per-namespace mappings of user and group IDs.

* A process's user and group IDs can be different inside and outside a user
namespace.

* A process can have a normal unprivileged user ID outside a user
namespace while at the same time having a user ID of O inside the
namespace.

* This means that the process has full root privileges for operations inside the
user namespace, but is unprivileged for operations outside the namespace.

Creating User Namespace

child pid = clone(childFunc, child stack +
STACK SIZE, CLONE NEWUSER | SIGCHLD, argv([l]);

* Unshare(CLONE NEWUSER)

* No privilege 1s required to create a user namespace.

UID and GID Mappings

* Records written to/read from /proc/PID/uid_map and
/proc/PID/gid _map have this form:

* |D-inside-ns ID-outside-ns length

* ID-inside-ns and length define range of IDs inside user NS that are to
be mapped

 |ID-outside-ns defines start of corresponding mapped range in
“outside” user NS

 E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

0 1000 10

Who sets the mapping?

* Parent process sets the mapping of child process by writing two files
available via /proc

* /proc/PID/uid_map and /proc/PID/gid_map

User namespaces can be nested

nested
user namespace

uid 0, root in the container

uid 60000 uid 65000

user namespace

uid 0, root in the container

uid 100000/ uid 199999

initial user namespace

uid 0, root

4294967295 uids

Example

» ./demo_userns x

* Determine PID of cloned child
* ps -C demo_userns -0 'pid uid comm’

* echo '0 1000 1' > /proc/4713/uid_map

e user ID 1000 in the parent user namespace (earlier mapped to 65534) has
been mapped to user ID 0 in the user namespace created by demo_userns.

"Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

There are a number of NS types

Each NS type governs some global resource(s); e.g.:
* UTS: hosthame, NIS domain name
* Mount: set of mount point
* Network: IP routing tables, port numbers, /proc/net, ...

There is an ownership relationship between user NSs and non-user NSs such that each non-user
NS is “owned” by a particular user NS

. \I<Ivshen creating a new nonuser NS, kernel marks that NS as owned by the user NS of process creating the new
If a process operates on resources governed by nonuser NS:

* Permission checks are done according to process’s capabiliites in user NS that owns the nonuser NS that
governs the resources

User namespaces “govern” other namespace
types

e Xis created with Unshare —Ur —u <prog>
e Xisin new user NS, with root mappings and has all capabilities
e Xisinanew UTS NS, which is owned by new user NS

e Xisininitial instance of all other NS types (e.g network NS)

Initial user namespace

creator eUID: 0
Y

is owned by @y
A
avoy Child user namespace Initial UTS Initial network
is OWDC creator eUID: 1000 namespace namespace
Second UTS L) -
namespace |is member of et
o
~ . : /{Q\/oei
07@1;\; 6\1‘f Process X) /.;%/6‘@
61“0}\ eUID inside NS: 0 e

eUID in outer NS: 1000
capabilities: =ep

Changing hostname

e Suppose X tries to change hostname (CAP_SYS_ADMIN)

e Xisin second UTS NS

* Permissions checked according to X’s capabilities in user NS that owns
that UTS NS => succeeds (X has capabilities in that user NS)

Initial user namespace

X creator eUID: 0 ’d'“o
X) %,
& ' dby N
o is owned by 5
d by Child user namespace Initial UTS Initial network
is OWD creator eUID: 1000 namespace namespace
Second UTS A -
[namespace] \is member of L
7O
| &
N ~ g s ¢ 6\
0]‘91;]51f Process X) /.;%6‘6
Gfo\f\ eUID inside NS: 0 e

eUID in outer NS: 1000
capabilities: =ep

Changing hostname

* Suppose X tries to bind to reserved socket port
(CAP_NET_BIND _ SERVICE)

e Xisininitial NET NS
* Permissions checked according to X’s

e AL eor b0 i,
capabilities in user NS that owns S oty e,

A

that network NS => fails o] Ciﬂiifiﬂfi%“?‘fﬁé?} rmenee) [mamepe
Second UTS s
(X has no capabilities in initial user NS) is member of e

%\ . P b b
%, 4 Process X e
66\ ~ .. PN
< o eUID inside NS: 0 -

eUID in outer NS: 1000
capabilities: =ep

Interpretation of ID-outside-ns

* Interpretation of ID-outside-ns depends on whether process opening
uid_map/gid_map is in the same
* If “opener” and PID are in same user NS:

* |ID-outside-ns interpreted as ID in parent user NS of PID
« Common case: process is writing its own mapping file

* If “opener” and PID are in different user NSs:
* |ID-outside-ns interpreted as ID in opener’s user NS

e Equivalent to previous case, if “opener” is (parent) process that created user
NS using clone()

* (Above rules make sense, when we consider how these two cases
could be rationally conceived)

Initial User NS

\

Child user NS
Uid_map 0 1000 1

Child user NS
Uid_map: 300 1000 1

PID: 2366

PID: 2571

* If PID 2366 reads /proc/2571/uid_map, what should it see? 0 300 1
e If PID 2571 reads /proc/2366/uid_map, what should it see? 3000 1

Initial User NS

\

Child user NS
Uid_map 0 1000 1

Child user NS
Uid_map: 300 1000 1

PID: 2366

PID: 2571

* If PID 2366 reads /proc/2571/uid_map, what should it see? 0 300 1
e If PID 2571 reads /proc/2366/uid_map, what should it see? 3000 1

Mounting a filesystem

* On Linux, as on other UNIX systems, all files from all file systems reside
under a single directory tree.

* Root of this tree is the root directory / (slash)

* Other storage devices/file systems are mounted under the root directory
and appear as subtrees within the overall hierarchy

* The superuser uses a command of the following form to mount a
device/file system at the specified directory:

* S mount device directory
* The directory becomes a mount point

A file system must be mounted before it can be used by the operating
system

* To list the currently mounted file systems, we can use

I\/I O u nt p O | ntS the command mount with no arguments

S mount
/dev/sda6 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
’ ’ ’ /dev/sdal on /windows/C type vfat (rw,noexec,nosuid,nodev)

sdab file system | \

Moum
- . > (windows

/dev/sda9 on /home/mtk/test type reiserfs (rw)

bin boot home

bash vmlinuz

(britta) (windows)

explorer.exe

copy.c

C directory)

sda9 file system sdal file system

regular file

sda file system

Mount() system call

#include <sys/mount.h>
int mount(const char *source, const char *target, const char *fstype,

unsigned long mountflags, const void *data);
Returns O on success, or —1 on error

Source specifies the file system contained on the device
Target specifies the directory (the mount point)
fstype argument is a string identifying the type of file system

mountflags argument is a bit mask that modify the operation of mount().

Unmount() system call

* The umount() system call unmounts a mounted file system.
* int umount(const char *target);

* The target argument specifies the mount point of the file system to
be unmounted.

* It is not possible to unmount a file system that is busy; that is, if there
are open files on the file system, or a process’s current working
directory is somewhere in the file system.

Maintaining mount information

 The mount(8) and umount(8) commands automatically maintain the file
/etc/mtab

 Similar to /proc/mounts but more detailed
e Corresponding system calls do not maintain this file. The developer must write to them.

Format: /dev/sda9 /boot ext3rw 00

e This line contains six fields:

The name of the mounted device.
The mount point for the device.
The file-system type.

Mount flags. In the above example, rw indicates that the file system was mounted read-write.

A number used to control the operation of file-system backups by dump(8). This field and the
next are used only in the /etc/fstab file; for /proc/mounts and /etc/mtab, these fields are always O.

A number used to control the order in which fsck(8) checks file systems at system boot time.

Mounting a filesystem at multiple mount
points

A file system can be mounted at multiple locations within the file system.

* Because each of the mount points shows the same subtree, changes made
via one mount point are visible through the other(s)

* # mkdir /testfs
mkdir /demo
mount /dev/sdal2 /testfs
mount /dev/sdal2 /demo
mount | grep sdal2
/dev/sdal2 on /testfs type ext3 (rw)

/dev/sdal2 on /demo type ext3 (rw)
touch /testfs/myfile
#1s /demo

myfile

Stacking multiple mount points at the same
mount point

* Multiple mounts to be stacked on a single mount point.

* Each new mount hides the directory subtree previously visible at that mount point.
 When the mount at the top of the stack is unmounted, the previously hidden mount
becomes visible once more

mount /dev/sdal2 /testfs Create first mount on /testfs
touch ftestfs/myfile Make a file in this subtree

mount /dev/sdal3 /testfs Stack a second mount on /testfs
mount | grep testfs Verify the setup

touch /testfs/newfile Create a file in this subtree

Is [testfs View files in this subtree
newfile
umount /testfs Pop a mount from the stack

mount J grep testfs Now only one mount on [testfs
/dev/sdal2 on /testfs type ext3 (rw)

Is /testfs Previous mount is now visible
lost+found myfile

Bind mounts

* A bind mount (using MS_BIND flag) allows a directory or a file to be mounted at some
other location in the file-system hierarchy.

e This results in the directory or file being visible in both locations.

* A bind mount is somewhat like a hard link, but differs in two respects:
* A bind mount can cross file-system mount points (and even chroot jails).
* |tis possible to make a bind mount for a directory.

mkdir d1

touch d1/x

mkdir d2

mount —-bind d1 d2

Isd2

X

touch d2/y

Isdl

Xy

Bind mounts on a file

» # cat > f1 Create file to be bound to another location

Chance is always powerful. Let your hook be always cast.

Type Control-D
touch f2 This is the new mount point

mount --bind f1 f2 Bind f1 as f2
mount | egrep '(d1]f1)’ See how mount points look
[testts/d1 on testfs d2 type none (rw,bind)

/testfs/f1 on /testfs/fz type none (rw, bmd)

cat >>f2 Change f2
In the Ip;ool where you least expect it, will be a fish.

cat f1 The change is visible via original f le f1

Chance is always powerful. Let your hook be always cast.
In the pool where you least expect it, will be a fish.
rm £2 Can’t do this because it is a mount point

rm: cannot unlink 'f2': Device or resource busy

umount f2 So unmount
rm f2 Now we can remove 2

Why bind mounts?

e creation of a chroot jail.

» Rather than replicating various standard directories (such as /lib) in the jail, we can simply create bind
mounts for these directories within the jail.

* These directories should possibly be mounted read-only

Recursive Bind Mounts

* Recursive bind mount: submounts under the source directory are
replicated under mount target.

* How: MS_REC flag ORed with MS_BIND

* Example:

mkdir top

mkdir srcl

touch srcl/aaa

mount --bind srcl top

mkdir top/sub

mkdir src2

touch src2/bbb

mount --bind src2 top/sub

find top

Non-recursive

mkdir dirl

mount --bind top dirl
find dirl

Recursive
mkdir dir2

mount --rbind top dir2
find dir2

Mount Moves

* move a subtree: source specifies an existing mount and target
specifies the new location to which that mount is to be relocated.

* The move is atomic: at no point is the subtree unmounted.

Mount Namespace

* isolate the set of filesystem mount points seen by a group of
processes.

 processes in different mount namespaces can have different views of
the filesystem hierarchy.

* Use: Create environments that are similar to chroot jails but more
secure.

Mount namespaces

* Creating a separate mount
namespace allows each isolated
process to have a completely
different view of the entire system’s
mountpoint structure from the
original one.

* Allows a different root to be
specified for each group of isolated
processes

Host

Mount Namespace

* CLONE_NEWNS puts cloned process in new mount namespace OR
make the calling process enter the new namespace.

* Child process can unmount/mount filesystems without affecting
anything outside

e Can setup an entirely new filesystem for container

* newly created namespace initially receives all mount points
replicated from the caller’s namespace.

* Later mount points?
* Depends on mount propagation types

MS SHARED

* MS_SHARED: When changes are made under a mount point of this
type in one namespace, the change will be propagated to other
namespaces in the same peer group.

Peer group

» A peer group is a set of mount points that propagate mount and unmount
events to one another.

* A peer group acquires new members when

* a mount point whose propagation type is shared is either replicated during the
creation of a new namespace

* A mount point is used as the source for a bind mount.

* In both cases, the new mount point i1s made a member of the same peer
group as the existing mount point.

* A mount point ceases to be a member of a peer group when
* it is unmounted, either explicitly, or

* implicitly when a mount namespace is torn down because the last member process
terminates or moves to another namespace.

MS SHARED

Host (Mount NS 1 \ / Mount NS 2
/ \ MS_SHARED _| MS_SHARED
Host Mount NS g
MS_SHARED
X - -
\ J 4 Mount NS 3)

MSSHA?
\ 4

e NS 1 and NS 3 are cloned from Host Mount NS.
e NS 2iscloned form NS 1

MS SHARED

Host

-

o

Host Mount NS

~

-

0 MS_SHARED
‘ b

/

-

Mount NS 1
MSSHARK
N
" MountNS 3

MS_SHARED 0
N ‘ ;

-

Mount NS 2

. MS_SHARED 0
‘ i

MS_PRIVATE

Host

-

o

Host Mount NS

~

-

X MS_PRIVATE

/

Mount NS 1
MSPRNAZ)
N
" MountNS 3

MSPRV?

\ 4

" Mount NS 2
MSPRIV?
\

MS_PRIVATE

Host (Mount NS 1 \ / Mount NS 2
KHost Mount NS\ s e 0
MS_PRIVATE E:)
.) -
ad ®
\ J 4 Mount NS 3 N

MS_PRIVATE 0
N ‘ ; J

* Changes in either NS are not shared across containers.

MS SLAVE

« MS_SLAVE: A mount point of this type receives changes from patent
but does not propagate changes to peers.

MS SLAVE

Host

Host Mount NS

-

X MS_SHARED

_ /

Mount NS 1
MSSLAVK)
N
" MountNS 3

MSSHA?
\

\ 4

" Mount NS 2
MSSLAVX
\

MS SLAVE

Host (Mount NS 1 \ / Mount NS 2 \
/ \ MS_SLAVE | MS_SLAVE 0
Host Mount NS
° uMS_SHARED %
0 L & S ®@® 00
®» ®
\ J 4 Mount NS 3 N

MS_SHARED 0
N ‘ ; J

* Changes in NS 1 and NS 2 are not seen by peers or host.

MS UNBINDABLE

* MS_UNBINDABLE: A mount point of this type can’t be the source of a
bind mount operation. And similar to MS_PRIVATE, changes under
this mount point does not propagate/receive changes to/from peers.

Mount Point Details

* The first is that the propagation type is a per-mount-point setting.
Within a namespace, some mount points might be marked shared,
while others are marked private (or slave or unbindable).

* Propagation type determines the propagation of mount and unmount
events immediately under the mount point.

* Possible for a mount to be both the slave of a master peer group as
well as sharing events with a set of peers of its own—a so-called
slave-and-shared mount.

* Event propagation does not imply some sort of message passing
between mount points.

Example

* # mount --make-private /

* # mount --make-shared /dev/sda3 /X

* # mount --make-shared /dev/sda5 /Y

* # unshare -m --propagation unchanged sh
* # mkdir /Z

* # mount --bind /X /Z

Example

* # mount --make-private /

* # mount --make-shared /dev/sda3 /X
* # mount --make-shared /dev/sda5 /Y
* # unshare —m --propagation unchanged sh

* # mkdir /Z
* # mount --bind /X /Z

Mount NS O

Bind Mount

Mount NS 1

Defaults for / and unshare()

Default propagation type is for a new mount point:

* If the mount point has a parent (i.e., it is a non-root mount point) and
the propagation type of the parent is MS_SHARED, then the
propagation type of the new mount is also MS_SHARED.

* Otherwise, the propagation type of the new mount is MS_PRIVATE.

e What is default for root?

Defaults for / and unshare()

Default propagation type is for a new mount point:

* If the mount point has a parent (i.e., it is a non-root mount point) and the
propagation type of the parent is MS_SHARED, then the propagation type of the
new mount is also MS_SHARED.

e Otherwise, the propagation type of the new mount is MS_PRIVATE.

 What is default for root?
» systemd sets the propagation type of all mount points to MS_SHARED.

 What does unshare() assume as default?

* Opposite behavior. Why?
* mount --make-rprivate /

* To prevent: unshare -m --propagation unchanged <cmd>

Creating a basic container

int main(int argc, char *argv[]) {

int cpid = fork();

if (cpid ==-1)

{ errExit("fork"); }

if (cpid == 0)

{ unshare(CLONE_NEWNS); Create a a new mount namespace.

mount("", "/", NULL, MS_SLAVE | MS_REC, NULL); Why SLAVE?

mount(eootfs, rootfs, NULL, MS_BIND | MS_REC, NULL); Why bind mount to itself?
chdir(rootfs); Enter the rootfs directory.

mount(rootfs, "/", NULL, MS_MOVE, NULL); Move mount point rootfs from itself to “/”

chroot("."); f Change the root directory to Tootfs.

chdir("/"); Safe practice
mount("", "/", NULL, MS_SHARED | MS_REC, NULL); changes in the container will be propagated to its children if any
mount("proc", "/proc", "proc", MS_NOSUID | MS_NOEXEC | MS_NODEV, NULL); Mount procfs for the container.

execv(argv[1], &argv[1]); }

else {

if (waitpid(cpid, NULL, 0) == -1) { errExit("waitpid"); } }
return O;

}

https://man7.org/linux/man-pages/man5/proc.5.html

Do we still need chroot()?

 pivot_root(SYS_pivot_root, const char *new_root, const char
*put_old) changes the root mount in the mount namespace of the
calling process.

* Moves the root mount to the directory put_old and makes new_root the new
root mount.

* pivot_root() does not change the caller's current working directory (unless it
is on the old root directory), and thus it should be followed by a chdir("/")
call.

* MS_MOVE + chroot() = pivot_root()

Example

chdir(new_root);

pivot_root(".
umount2(".", MNT_DETACH);

e pivot_root() call stacks the old root mount point on top of the new root
mount point at /.
e At that point, the calling process's root directory and current working directory refer
to the new root mount point (new_root).

e During the subsequent umount() call, resolution of "." starts with new root
and then moves up the list of mounts stacked at /, with the result that old
root mount point is unmounted.

I

Verify container and parent in different
namespace

e sudo readlink /proc/SS/ns/mnt
* sudo readlink /proc/<PID>/ns/mnt

Union Mounts

Resultant flesystem after union mounts

Filesystem on /dev/sdb Filesystem on /dev/sdc
/mnt
/dev/sdc
/dev/sdb — Qi

s g dirl L file_cl

ir [=

e file el dir4d

file bl

: dir4
tilel filel
linkl -> filel linkl -> dir4

—— 1inkl -> dir4

mount /dev/sdb /mnt

#Is /mnt dirl filel link1

mount --union /dev/sdc /mnt
#Is /mnt dirl dir4 filel link1

umount /mnt

#Is /mnt dirl filel link1

Mounting multiple filesystems
on the same mount point

Here are 2 files “imagel” & “image2” formatted as a filesystems

/tmp/imagel /tmp/image2

File System File System

dd if=/dev/zero of=/tmp/imagel bs=1024 count=1024
dd if=/dev/zero of=/tmp/image2 bs=1024 count=1024
mkfs —t ext4 /tmp/imagel
mkfs —t ext4 /tmp/image2

Accessing filesystems on these “imagel” & “image2”

imagel image2

mkdir /tmp/mnt1 /tmp/mnt2
mount /tmp/imagel /tmp/mnt1
mount /tmp/image2 /tmp/mnt2

A

Mounting filesystems (files imagel and image2) on mount points mntl and mnt2 in

read-write mode allows files created and accessed via respective mount points.

* Directories are lists of files and subdirectories

Creating files in filesystems (“imagel” & “image2”)

imagel image2 mnt1
-

cat > /tmp/mnt1/filel « filel

Test - filel @ Y, \

cat > /tmp/mnt2/file2
Test - file2
umount /tmp/mnt1 ; umount /tmp/mnt2

Files filel, and file2 are created on file systems imagel, and image2 respectively

Mounting multiple filesystems on single mount point

/
e e LITP
imagel image2 test mnt
» file2
mkdir /tmp/test_mnt a1
mount /tmp/imagel /tmp/test_mnt \ /
mount /tmp/image2 /tmp/test_mnt \ 4
#Is /tmp/test_mnt
file2
umount /tmp/test_mnt
#ls
filel

umount /tmp/test_mnt
When two filesystems are mounted on a single mount point one after the other, only

files from the filesystem mounted last remain accessible via this mount point.

/
|

e e \N§ : n;

. 4)
imagel image2 AR mnt2
mount /tmp/imagel /tmp/mnt1 * filel « file2

mount —o ro /tmp/image2 /tmp/mnt2 \ y € 4

Union of multiple filesystems on single mount point

/
e e——mpEE—
. \/ I
imagel image2 mnt1 mnt2
- -
- " \ — "
* filel * file2

\ y €

mount —t autofs —o br:/tmp/mnt1:/tmp/mnt2 none /tmp/test mnt
cat /tmp/test_mnt/filel

Test — filel

cat /tmp/test_mnt/file2

Test — file2

Note that file2 is coming from an underlying read-only file system from image2
OR mnt2

Union of multiple filesystems on single mount point

(
e Ssupeasemstes e ST SENMPTEE T e e
\/ \
imagel image2 mntl mnt2
- -
» filel » file2
\ y € 4

Can we modify filel in test_mnt directory? Yes. As it is coming from an N
underlying read-write file system we can modify it — ——
#cat >> /tmp/test_mnt/filel :
Text added after ufs mounting %.'I 1
#cat /tmp/test_mnt/filel . f:|:2

Test — filel \
Test added after ufs mounting

Important - Can we modify file2 in test_mnt directory? Yes.
Though it is coming from an underlying read-only file system we
can still modify it. Union File Systems use a concept COW or copy
of write to implement it i.e. a copy of file2 would be created in
imagel which is read-write and that would override the file
coming from image2.

#cat >> /tmp/test_mnt/file2
Text added after ufs mounting
#cat /tmp/test_mnt/file2

Test — file2

»»»»»»

imagel image2

The modified copy of the file is internally written to the read-write
mounted filesystem here and the original read-only copy also
remains within the filesystem from imagel

#cat /tmp/mnt2/file2
Test — file2

#cat /tmp/mnt1/file2
Test — file2
Test added after ufs mounting

test mnt

» filel
» file2

Storage in Containers

How are data & containers stored?

= AUFS Another Union Filesystem

= possibly other snapshotting fs (zfs) / block device (LVM)
« Layered approach

. tf'ootfs — kernel layer

- bootfs — a Linux distribution

rarant o
= emacs
= apache

= Copy-on-Write approach — a la subversion (SVN)

vockercr | [l 8 [
Docker design L

on !Ii
Execution =
Driver

Storage Driver

. ;’mages are similar to VM images, except that they consist of a series of
ayers.

* Every layer is a set of files. The layers get stacked with files in the upper
layers superseding files in the layers below them.

 The number of layers in a single image ranges from one to several dozens.
* Similarly to git, the layers are identified by fingerprints of their content.

* Different images often share layers, which provides significant space and
/O transfer savings.

* A layer in a Docker image often represents a layer in the corresponding
software stack.

* For example, an image could consist of a Linux distribution layer, a libraries layer, a
middleware layer, and an application layer.

Images

* A container image is read-only, with changes to its file system during
execution stored separately.

* To create a container from an image, Docker creates an additional

writeable layer on top of the image with which the container
interacts.

 When the container updates a file, the file is copied to the writable
layer and only the copy is updated (copy-on-write).

e Unless the user saves the changes as a new layer (and hence a new
image), the changes are discarded when the container is removed.

Storage Drivers

» Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.

* A storage driver is responsible for preparing a file system for a
container.

e Several:
* VFS
* AUFS
* Overlay

"B Which storage driver to use?

Source: Tarasov, Vasily, et al. "In search of the ideal storage configuration for Docker containers."
2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE, 2017.

Storage Driver Comparison

VFS Aufs (Another Union file system)

* This simple driver does not save * Takes multiple directories and
file updates separately from an stacks them on top of each other
image via CoW, but instead creates to provide a single unified view at a
a complete copy of the image for single mount point. Aufs performs
each newly started container. It file-level CoW, storing updated
can therefore run on top of any file versions of files in upper branches.
system. To support Docker, each branch

maps to an image layer
* - Not so much stable

* + Efficient but depends on multiple
factors

e + stable
e - inefficient

OverlayFS

* Yet another implementation of a
union file system

e Available for Linux distributions

* OK on efficiency and stability

Btrfs

* Modern CoW file system based
on a CoW-friendly version of a B-
tree

* Natively supports CoW and does
not require an underlying file
system

* + |0 performance
* + Space efficiency
* - not so stable

