
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

PID Namespaces in Docker
• docker run –d –name server1 busybox sh –c “nc -l –p 0.0.0.0:7070”

• docker run –d –name server2 busybox sh –c “nc -l –p 0.0.0.0:8080”

OR

• docker run –t –d busybox sh

• docker run –t –d busybox sh

• docker ps -a

• docker exec server1 ps –ef

Will see two processes
• docker exec server2 ps –ef

Will see two processes

• ps –ef

<Stop and delete server1>

• docker run –d –pid host –name server1 busybox sh –c “nc -1 –p 0.0.0.0:7070”

• docker exec server1 ps –ef

/proc from the host is mounted

User Namespace

• Allow per-namespace mappings of user and group IDs.
• A process's user and group IDs can be different inside and outside a user

namespace.

• A process can have a normal unprivileged user ID outside a user
namespace while at the same time having a user ID of 0 inside the
namespace.
• This means that the process has full root privileges for operations inside the

user namespace, but is unprivileged for operations outside the namespace.

Creating User Namespace

child_pid = clone(childFunc, child_stack +
STACK_SIZE, CLONE_NEWUSER | SIGCHLD, argv[1]);

• Unshare(CLONE_NEWUSER)

• No privilege is required to create a user namespace.

UID and GID Mappings

• Records written to/read from /proc/PID/uid_map and
/proc/PID/gid_map have this form:
• ID-inside-ns ID-outside-ns length

• ID-inside-ns and length define range of IDs inside user NS that are to
be mapped
• ID-outside-ns defines start of corresponding mapped range in

“outside” user NS
• E.g., following says that IDs 0...9 inside user NS map to IDs

1000...1009 in outside user NS
• 0 1000 10

Who sets the mapping?

• Parent process sets the mapping of child process by writing two files
available via /proc
• /proc/PID/uid_map and /proc/PID/gid_map

User namespaces can be nested

Example

• ./demo_userns x

• Determine PID of cloned child
• ps -C demo_userns -o 'pid uid comm’

• echo '0 1000 1' > /proc/4713/uid_map

• user ID 1000 in the parent user namespace (earlier mapped to 65534) has
been mapped to user ID 0 in the user namespace created by demo_userns.

"Root privileges inside a user NS”

• What does “root privileges in a user NS” mean?

• There are a number of NS types
• Each NS type governs some global resource(s); e.g.:

• UTS: hostname, NIS domain name
• Mount: set of mount point
• Network: IP routing tables, port numbers, /proc/net, ...

• There is an ownership relationship between user NSs and non-user NSs such that each non-user
NS is “owned” by a particular user NS
• When creating a new nonuser NS, kernel marks that NS as owned by the user NS of process creating the new

NS

• If a process operates on resources governed by nonuser NS:
• Permission checks are done according to process’s capabiliites in user NS that owns the nonuser NS that

governs the resources

User namespaces “govern” other namespace
types
• X is created with Unshare –Ur –u <prog>

• X is in new user NS, with root mappings and has all capabilities

• X is in a new UTS NS, which is owned by new user NS
• X is in initial instance of all other NS types (e.g network NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Changing hostname

• Suppose X tries to change hostname (CAP_SYS_ADMIN)
• X is in second UTS NS
• Permissions checked according to X’s capabilities in user NS that owns

that UTS NS => succeeds (X has capabilities in that user NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Changing hostname

• Suppose X tries to bind to reserved socket port
(CAP_NET_BIND_SERVICE)
• X is in initial NET NS
• Permissions checked according to X’s
capabilities in user NS that owns
that network NS => fails
(X has no capabilities in initial user NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Interpretation of ID-outside-ns

• Interpretation of ID-outside-ns depends on whether process opening
uid_map/gid_map is in the same
• If “opener” and PID are in same user NS:
• ID-outside-ns interpreted as ID in parent user NS of PID
• Common case: process is writing its own mapping file

• If “opener” and PID are in different user NSs:
• ID-outside-ns interpreted as ID in opener’s user NS
• Equivalent to previous case, if “opener” is (parent) process that created user

NS using clone()
• (Above rules make sense, when we consider how these two cases

could be rationally conceived)

• If PID 2366 reads /proc/2571/uid_map, what should it see? 0 300 1
• If PID 2571 reads /proc/2366/uid_map, what should it see? 300 0 1

Initial User NS

Child user NS
Uid_map: 300 1000 1

PID: 2366

Child user NS
Uid_map 0 1000 1

PID: 2571

• If PID 2366 reads /proc/2571/uid_map, what should it see? 0 300 1
• If PID 2571 reads /proc/2366/uid_map, what should it see? 300 0 1

Initial User NS

Child user NS
Uid_map: 300 1000 1

PID: 2366

Child user NS
Uid_map 0 1000 1

PID: 2571

Mounting a filesystem

• On Linux, as on other UNIX systems, all files from all file systems reside
under a single directory tree.
• Root of this tree is the root directory / (slash)
• Other storage devices/file systems are mounted under the root directory

and appear as subtrees within the overall hierarchy
• The superuser uses a command of the following form to mount a

device/file system at the specified directory:
• $ mount device directory

• The directory becomes a mount point
• A file system must be mounted before it can be used by the operating

system

Mount points

262 Chapter 14

To list the currently mounted file systems, we can use the command mount, with no
arguments, as in the following example (whose output has been somewhat
abridged):

$ mount
/dev/sda6 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda8 on /home type ext3 (rw,acl,user_xattr)
/dev/sda1 on /windows/C type vfat (rw,noexec,nosuid,nodev)
/dev/sda9 on /home/mtk/test type reiserfs (rw)

Figure 14-4 shows a partial directory and file structure for the system on which the
above mount command was performed. This diagram shows how the mount points
map onto the directory hierarchy.

Figure 14-4: Example directory hierarchy showing file-system mount points

14.8 Mounting and Unmounting File Systems
The mount() and umount() system calls allow a privileged (CAP_SYS_ADMIN) process to
mount and unmount file systems. Most UNIX implementations provide versions of
these system calls. However, they are not standardized by SUSv3, and their opera-
tion varies both across UNIX implementations and across file systems.

/

bin home

vmlinuzbash mtkavr

test britta windows

explorer.execopy.c

directory

regular file

Mount
points

sda6 file system

boot windows

sda9 file system

sda8 file system

sda1 file system

C

• To list the currently mounted file systems, we can use

the command mount with no arguments

$ mount
/dev/sda6 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/sda1 on /windows/C type vfat (rw,noexec,nosuid,nodev)

/dev/sda9 on /home/mtk/test type reiserfs (rw)

Mount() system call

• #include <sys/mount.h>
int mount(const char *source, const char *target, const char *fstype,

• unsigned long mountflags, const void *data);
Returns 0 on success, or –1 on error

• Source specifies the file system contained on the device

• Target specifies the directory (the mount point)

• fstype argument is a string identifying the type of file system

• mountflags argument is a bit mask that modify the operation of mount().

Unmount() system call

• The umount() system call unmounts a mounted file system.
• int umount(const char *target);
• The target argument specifies the mount point of the file system to

be unmounted.
• It is not possible to unmount a file system that is busy; that is, if there

are open files on the file system, or a process’s current working
directory is somewhere in the file system.

Maintaining mount information

• The mount(8) and umount(8) commands automatically maintain the file
/etc/mtab
• Similar to /proc/mounts but more detailed
• Corresponding system calls do not maintain this file. The developer must write to them.

• Format: /dev/sda9 /boot ext3 rw 0 0
• This line contains six fields:

• The name of the mounted device.
• The mount point for the device.
• The file-system type.
• Mount flags. In the above example, rw indicates that the file system was mounted read-write.
• A number used to control the operation of file-system backups by dump(8). This field and the

next are used only in the /etc/fstab file; for /proc/mounts and /etc/mtab, these fields are always 0.
• A number used to control the order in which fsck(8) checks file systems at system boot time.

Mounting a filesystem at multiple mount
points
• A file system can be mounted at multiple locations within the file system.
• Because each of the mount points shows the same subtree, changes made

via one mount point are visible through the other(s)
• # mkdir /testfs

mkdir /demo
mount /dev/sda12 /testfs
mount /dev/sda12 /demo
mount | grep sda12
/dev/sda12 on /testfs type ext3 (rw)
/dev/sda12 on /demo type ext3 (rw)

touch /testfs/myfile
ls /demo

myfile

Stacking multiple mount points at the same
mount point
• Multiple mounts to be stacked on a single mount point.

• Each new mount hides the directory subtree previously visible at that mount point.
• When the mount at the top of the stack is unmounted, the previously hidden mount

becomes visible once more
mount /dev/sda12 /testfs Create first mount on /testfs
touch /testfs/myfile Make a file in this subtree

mount /dev/sda13 /testfs Stack a second mount on /testfs
mount | grep testfs Verify the setup
touch /testfs/newfile Create a file in this subtree
ls /testfs View files in this subtree
newfile
umount /testfs Pop a mount from the stack

mount | grep testfs Now only one mount on /testfs
/dev/sda12 on /testfs type ext3 (rw)
ls /testfs Previous mount is now visible
lost+found myfile

Bind mounts

• A bind mount (using MS_BIND flag) allows a directory or a file to be mounted at some
other location in the file-system hierarchy.

• This results in the directory or file being visible in both locations.
• A bind mount is somewhat like a hard link, but differs in two respects:

• A bind mount can cross file-system mount points (and even chroot jails).
• It is possible to make a bind mount for a directory.

mkdir d1
touch d1/x
mkdir d2
mount –bind d1 d2
ls d2
x
touch d2/y
ls d1
x y

Bind mounts on a file

• # cat > f1 Create file to be bound to another location
Chance is always powerful. Let your hook be always cast.
Type Control-D

touch f2 This is the new mount point
mount --bind f1 f2 Bind f1 as f2
mount | egrep '(d1|f1)’ See how mount points look

/testfs/d1 on /testfs/d2 type none (rw,bind)
/testfs/f1 on /testfs/f2 type none (rw,bind)

cat >> f2 Change f2
In the pool where you least expect it, will be a fish.

cat f1 The change is visible via original file f1
Chance is always powerful. Let your hook be always cast.
In the pool where you least expect it, will be a fish.

rm f2 Can’t do this because it is a mount point
rm: cannot unlink `f2': Device or resource busy

umount f2 So unmount
rm f2 Now we can remove f2

Why bind mounts?

• creation of a chroot jail.

• Rather than replicating various standard directories (such as /lib) in the jail, we can simply create bind
mounts for these directories within the jail.

• These directories should possibly be mounted read-only

Recursive Bind Mounts

• Recursive bind mount: submounts under the source directory are
replicated under mount target.
• How: MS_REC flag ORed with MS_BIND
• Example:

mkdir top
mkdir src1
touch src1/aaa
mount --bind src1 top
mkdir top/sub
mkdir src2
touch src2/bbb
mount --bind src2 top/sub
find top

Non-recursive
mkdir dir1
mount --bind top dir1
find dir1

Recursive
mkdir dir2
mount --rbind top dir2
find dir2

Mount Moves

• move a subtree: source specifies an existing mount and target
specifies the new location to which that mount is to be relocated.
• The move is atomic: at no point is the subtree unmounted.

Mount Namespace

• isolate the set of filesystem mount points seen by a group of
processes.
• processes in different mount namespaces can have different views of

the filesystem hierarchy.
• Use: Create environments that are similar to chroot jails but more

secure.

Mount namespaces

• Creating a separate mount
namespace allows each isolated
process to have a completely
different view of the entire system’s
mountpoint structure from the
original one.
• Allows a different root to be

specified for each group of isolated
processes

Host

Mount NS 1 Mount NS 2

B

C D

B

X

Mount Namespace

• CLONE_NEWNS puts cloned process in new mount namespace OR
make the calling process enter the new namespace.
• Child process can unmount/mount filesystems without affecting

anything outside
• Can setup an entirely new filesystem for container
• newly created namespace initially receives all mount points

replicated from the caller’s namespace.
• Later mount points?
• Depends on mount propagation types

MS_SHARED

• MS_SHARED: When changes are made under a mount point of this
type in one namespace, the change will be propagated to other
namespaces in the same peer group.

Peer group

• A peer group is a set of mount points that propagate mount and unmount
events to one another.
• A peer group acquires new members when

• a mount point whose propagation type is shared is either replicated during the
creation of a new namespace

• A mount point is used as the source for a bind mount.
• In both cases, the new mount point is made a member of the same peer

group as the existing mount point.
• A mount point ceases to be a member of a peer group when

• it is unmounted, either explicitly, or
• implicitly when a mount namespace is torn down because the last member process

terminates or moves to another namespace.

MS_SHARED

• NS 1 and NS 3 are cloned from Host Mount NS.
• NS 2 is cloned form NS 1

Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_SHARED

MS_SHARED MS_SHARED

MS_SHARED

MS_SHARED
Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_SHARED

MS_SHARED MS_SHARED

MS_SHARED

B

B B

B

MS_PRIVATE
Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_PRIVATE

MS_PRIVATE MS_PRIVATE

MS_PRIVATE

MS_PRIVATE

• Changes in either NS are not shared across containers.

Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_PRIVATE

MS_PRIVATE MS_PRIVATE

MS_PRIVATE

B

C D

E

MS_SLAVE

• MS_SLAVE: A mount point of this type receives changes from patent
but does not propagate changes to peers.

MS_SLAVE
Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_SHARED

MS_SLAVE MS_SLAVE

MS_SHARED

MS_SLAVE

• Changes in NS 1 and NS 2 are not seen by peers or host.

Host

Host Mount NS

Mount NS 1 Mount NS 2

Mount NS 3

MS_SHARED

MS_SLAVE MS_SLAVE

MS_SHARED

B

B B

B

C C D

MS_UNBINDABLE

• MS_UNBINDABLE: A mount point of this type can’t be the source of a
bind mount operation. And similar to MS_PRIVATE, changes under
this mount point does not propagate/receive changes to/from peers.

Mount Point Details

• The first is that the propagation type is a per-mount-point setting.
Within a namespace, some mount points might be marked shared,
while others are marked private (or slave or unbindable).
• Propagation type determines the propagation of mount and unmount

events immediately under the mount point.
• Possible for a mount to be both the slave of a master peer group as

well as sharing events with a set of peers of its own—a so-called
slave-and-shared mount.
• Event propagation does not imply some sort of message passing

between mount points.

Example

• # mount --make-private /
• # mount --make-shared /dev/sda3 /X
• # mount --make-shared /dev/sda5 /Y
• # unshare -m --propagation unchanged sh
• # mkdir /Z
• # mount --bind /X /Z

Example

• # mount --make-private /
• # mount --make-shared /dev/sda3 /X
• # mount --make-shared /dev/sda5 /Y
• # unshare –m --propagation unchanged sh
• # mkdir /Z
• # mount --bind /X /Z

Mount NS 0
/

X Z Y

Peer Group 1

Mount NS 1
/

X* Y*

Peer Group 2

Bind Mount

Defaults for / and unshare()

Default propagation type is for a new mount point:
• If the mount point has a parent (i.e., it is a non-root mount point) and

the propagation type of the parent is MS_SHARED, then the
propagation type of the new mount is also MS_SHARED.
• Otherwise, the propagation type of the new mount is MS_PRIVATE.

• What is default for root?

Defaults for / and unshare()

Default propagation type is for a new mount point:
• If the mount point has a parent (i.e., it is a non-root mount point) and the

propagation type of the parent is MS_SHARED, then the propagation type of the
new mount is also MS_SHARED.
• Otherwise, the propagation type of the new mount is MS_PRIVATE.

• What is default for root?
• systemd sets the propagation type of all mount points to MS_SHARED.

• What does unshare() assume as default?
• Opposite behavior. Why?
• mount --make-rprivate /

• To prevent: unshare -m --propagation unchanged <cmd>

Creating a basic container
int main(int argc, char *argv[]) {

int cpid = fork();

if (cpid == -1)

{ errExit("fork"); }

if (cpid == 0)

{ unshare(CLONE_NEWNS); // (1) Create a a new mount namespace.

mount("", "/", NULL, MS_SLAVE |MS_REC, NULL); // (2) Why SLAVE?

mount(rootfs, rootfs, NULL, MS_BIND |MS_REC, NULL); // (3) Why bind mount to itself?

chdir(rootfs); // (4) Enter the rootfs directory.

mount(rootfs, "/", NULL, MS_MOVE, NULL); // (5) Move mount point rootfs from itself to “/”

chroot("."); // (6) Change the root directory to rootfs.

chdir("/"); // (7) Safe practice

mount("", "/", NULL, MS_SHARED |MS_REC, NULL); // (8) changes in the container will be propagated to its children if any

mount("proc", "/proc", "proc", MS_NOSUID |MS_NOEXEC |MS_NODEV, NULL); // (9) Mount procfs for the container.

execv(argv[1], &argv[1]); }

else {

if (waitpid(cpid, NULL, 0) == -1) { errExit("waitpid"); } }

return 0;

}

https://man7.org/linux/man-pages/man5/proc.5.html

Do we still need chroot()?

• pivot_root(SYS_pivot_root, const char *new_root, const char
*put_old) changes the root mount in the mount namespace of the
calling process.
• Moves the root mount to the directory put_old and makes new_root the new

root mount.
• pivot_root() does not change the caller's current working directory (unless it

is on the old root directory), and thus it should be followed by a chdir("/")
call.

• MS_MOVE + chroot() = pivot_root()

Example

chdir(new_root);
pivot_root(".", ".");
umount2(".", MNT_DETACH);
• pivot_root() call stacks the old root mount point on top of the new root

mount point at /.
• At that point, the calling process's root directory and current working directory refer

to the new root mount point (new_root).
• During the subsequent umount() call, resolution of "." starts with new_root

and then moves up the list of mounts stacked at /, with the result that old
root mount point is unmounted.

Verify container and parent in different
namespace
• sudo readlink /proc/$$/ns/mnt
• sudo readlink /proc/<PID>/ns/mnt

Union Mounts

mount /dev/sdb /mnt
ls /mnt dir1 file1 link1
mount --union /dev/sdc /mnt
ls /mnt dir1 dir4 file1 link1
umount /mnt
ls /mnt dir1 file1 link1

Mounting multiple filesystems
on the same mount point

file2

Storage in Containers

Docker design

• images are similar to VM images, except that they consist of a series of
layers.
• Every layer is a set of files. The layers get stacked with files in the upper

layers superseding files in the layers below them.
• The number of layers in a single image ranges from one to several dozens.

• Similarly to git, the layers are identified by fingerprints of their content.
• Different images often share layers, which provides significant space and

I/O transfer savings.
• A layer in a Docker image often represents a layer in the corresponding

software stack.
• For example, an image could consist of a Linux distribution layer, a libraries layer, a

middleware layer, and an application layer.

influence the choice of an appropriate storage solution
for Docker containers (§III).

• We conduct a preliminary evaluation of the introduced
dimensions and analyze their impact on performance and
stability (§IV).

We found that, for example, for read-intensive workloads,
Aufs and Overlay2 are a good choice, while Btrfs can work
well in deployments that experience a more diverse set of
workloads. Device-mapper has a stable codebase but its perfor-
mance is typically low and highly susceptible to the underlying
storage speed. These and other observations can serve as a
starting point for future work on storage management for
Docker containers.

II. DOCKER

Docker consists of a Command Line Tool (CLI) and a
daemon (sometimes called engine) which continuously runs
in the background of a dockerized system (Figure 1). The
Docker daemon receives user commands from the CLI to
build new or pull existing images, start or stop containers from
images, delete containers or images, and other actions. Next,
we introduce the relevant background on Docker images and
its concept of storage drivers in more detail.

A. Docker Images

Modern software relies heavily on the availability of a
file system interface for its processes (after all, “Everything
is a file” in UNIX-derived OSs [12]). Files not only store
binaries, configuration files, and data, but also provide access
to the system information and configuration (e.g., /proc and
/sys file systems). Docker therefore dynamically creates a
file system for a container to execute from. Docker file system
images are similar to VM images, except that they consist of
a series of layers. Every layer is a set of files. The layers get
stacked with files in the upper layers superseding files in the
layers below them. For example, in Figure 1, if the same file
resides in layers L0 and L1, then containers C1 and C2 only
see the version from L1. However, all files in L0 that do not
exist in the upper layers will be seen by containers C1 and
C2. In almost all cases, a container’s file system is stored in
the local storage device of the node in which it executes.

The number of layers in a single image ranges from one
to several dozens [10]. Similarly to git [13], the layers are
identified by fingerprints of their content. Different images
often share layers, which provides significant space and I/O
transfer savings. A layer in a Docker image often represents
a layer in the corresponding software stack. For example, an
image could consist of a Linux distribution layer, a libraries
layer, a middleware layer, and an application layer.

A container image is read-only, with changes to its file sys-
tem during execution stored separately. To create a container
from an image, Docker creates an additional writeable layer on
top of the image with which the container interacts. When the
container updates a file, the file is copied to the writable layer
and only the copy is updated (copy-on-write). Unless the user

I I I

C1 C2 C3Docker CLI

L L1

L0

Storage

L

Driver
Driver

Execution

DaemonDocker

Fig. 1: Docker high-level design. C stands for Container, I for
Image, and L for Layer. Three containers are created; C1 and
C2 use images that share two layers.

saves the changes as a new layer (and hence a new image),
the changes are discarded when the container is removed.

To store data persistently beyond the container removal,
users can attach one or more file system volumes using a
volume driver which provides the container access to data
using protocols such as NFS and iSCSI. In this study, our focus
is on challenges specific to configuring the local “ephemeral”
file system for storing and accessing container images.

Users exchange images via a Docker registry service which
typically runs on an independent machine. For example,
Docker Hub is a popular registry service storing over 400,000
public images [14]. Docker clients cache images locally and
therefore can start any number of containers from an image
after pulling it only once. In this paper we assume that images
are already pulled from the registry and focus on the startup
and shutdown performance of containers.

Docker containers are often managed by high-level frame-
works like Docker Swarm [15], Kubernetes [16], and oth-
ers [17]. Furthermore, many products use Docker containers as
a basic primitive for their workflows [18], [19]. In this paper,
we generate workloads at the Docker level, not employing
orchestration frameworks or complex workflows. We plan to
extend our evaluation in future.

B. Storage Drivers

Docker uses a variety of pluggable storage drivers1 to
manage the makeup and granularity of the layers and how
changes to layers are saved. A storage driver is responsible
for preparing a file system for a container. In this section, we
briefly describe the available Docker storage drivers and their
key differentiating features.

VFS: This simple driver does not save file updates
separately from an image via CoW, but instead creates a
complete copy of the image for each newly started container.
It can therefore run on top of any file system. While this driver
is not recommended for production due to its inefficiency, we
discuss it here and in our evaluation since it is very stable and
provides a good baseline.

Aufs: Another Union File System [6] is a union file
system that takes multiple directories, referred to as branches,

1Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.

Images

• A container image is read-only, with changes to its file system during
execution stored separately.
• To create a container from an image, Docker creates an additional

writeable layer on top of the image with which the container
interacts.
• When the container updates a file, the file is copied to the writable

layer and only the copy is updated (copy-on-write).
• Unless the user saves the changes as a new layer (and hence a new

image), the changes are discarded when the container is removed.

Storage Drivers

• Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.
• A storage driver is responsible for preparing a file system for a

container.
• Several:
• VFS
• AUFS
• Overlay
• BtrFS Which storage driver to use?

Source: Tarasov, Vasily, et al. "In search of the ideal storage configuration for Docker containers."
2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE, 2017.

Storage Driver Comparison

VFS
• This simple driver does not save

file updates separately from an
image via CoW, but instead creates
a complete copy of the image for
each newly started container. It
can therefore run on top of any file
system.
• + stable
• - inefficient

Aufs (Another Union file system)
• Takes multiple directories and

stacks them on top of each other
to provide a single unified view at a
single mount point. Aufs performs
file-level CoW, storing updated
versions of files in upper branches.
To support Docker, each branch
maps to an image layer
• - Not so much stable
• + Efficient but depends on multiple

factors

OverlayFS
• Yet another implementation of a

union file system
• Available for Linux distributions

• OK on efficiency and stability

Btrfs
• Modern CoW file system based

on a CoW-friendly version of a B-
tree
• Natively supports CoW and does

not require an underlying file
system
• + IO performance
• + Space efficiency
• - not so stable

