
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

Namespace management

• Creating a new namespace
• clone(function, stack, CLONE_NEW*, args)

• creates a new process and a new namespace; the new process is attached to the new
namespace.

• Joining an existing namespace
• setns(fd, nstype)

• calling process to join an existing namespace specified by the file descriptor and nstype.
• Redefining namespace

• unshare(flags)
• Disassociating parts of process execution contexts

• Discovering namespace relationships
• ioctl(fd, request)

• discovery of namespace relationships

Revision

• Clone with CLONE_FILES unset is same as fork. In this case fds are
copied and duplicated

• Clone with CLONE_FILES set leads to sharing of fds. Sharing means no
new fds are created.

• CLONE_FILES is not to be confused with CLONE_NEWNS which relates
to mount points and root directory

• CLONE_NEWNS cannot be used with CLONE_FS.

Flags for namespaces

CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN
CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN

CLONE_NEWUSER 3.8 No capability is required
CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN

CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN
CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN

Example 1

• Demo_uts_namespace.c
• Show two different namespaces
• Show namespace does not exist

• Force existence
• # touch ~/uts # Create mount point
• # mount --bind /proc/<CHILD_PID>/ns/uts ~/uts

• setns.c
• ./setns ~/uts /bin/bash
• # hostname
• # ls –l /proc/$$/ns/

Unsharing execution contexts: unshare()

int unshare(int flags);
• Functionality similar to clone() but operates on the caller instead of

the callee
• It creates the new namespaces specified by the CLONE_NEW* bits in

its flags argument and makes the caller a member of the
namespaces.

• Main purpose of unshare() is to isolate namespace (and other) side
effects without having to create a new process or thread (as is done
by clone()).

Example of unshare

• clone(..., CLONE_NEWXXX,);
is roughly equivalent, in namespace terms, to the sequence:
if (fork() == 0)

unshare(CLONE_NEWXXX);

• Unshare is also available as a command
• unshare [options] program [arguments]
• options are command-line flags that specify the namespaces to unshare before

executing program with the specified arguments.

Example 2

• unshare.c
• # ./unshare -m /bin/bash

• # Start new shell in separate mount namespace

• # mount –t tmpfs tmpfs /mnt
• # mount | grep mnt

• Show one of the mounts in namespace
• Show absence of it in other namespace

PID

• PID is a system resource. It helps to identify a process uniquely even if
there are two processes that share the same human-readable name.

• PIDs are tracked in a special file system called procfs.
• /proc is where most Unix-like systems store information regarding

processes on a running system.

PID Namespace

• PID namespaces isolate the process ID, meaning that processes in
different PID namespaces can have the same PID.

• Each PID namespace has its own numbering staring from 1
• PID namespaces can be nested

Creating PID Namespace

child_pid = clone(childFunc, child_stack +
STACK_SIZE, CLONE_NEWPID | SIGCHLD, argv[1]);
printf("PID returned by clone(): %ld\n", (long)
child_pid);

PID Namespace

PID Namespace 1 (Parent)
at Level 0

P1D:1
ls /proc/

1
Callee/
parent

PID Namespace

PID Namespace 1 (Parent)
at Level 0

PID Namespace 2 (Child)
at Level 1

P1D:1

P1D:2

P1D:1

ls /proc/
1 2

ls /proc/
1

Cloned process
in the new namespace
Has no knowledge of parent
In this namespace

Callee/
parent

PID Namespace

PID Namespace 1 (Parent)
at Level 0

PID Namespace 2 (Child)
at Level 1

PID Namespace 3 (Child)
at Level 1

P1D:1

P1D:2

P1D:1

P1D:3

P1D:1

ls /proc/
1 2 3

ls /proc/
1

ls /proc/
1

Cloned processes
in the new namespaces
have no knowledge of parent in their
respective namespaces and no knowledge
of each other

Callee/
parent

PID Namespace

PID Namespace 1 (Parent)
at Level 0

PID Namespace 2 (Child)
at Level 1

PID Namespace 3 (Child)
at Level 1

P1D:1

P1D:2

P1D:1

P1D:3

P1D:1

P1D:4

ls /proc/
1 2 3 4

ls /proc/
1

ls /proc/
2

2 & 3 have no knowledge of
1
4 has knowledge of 1

Callee/
parent

Parent child relationship

• Multiple “nested” namespaces.
• Each namespace can have an entirely isolated set of processes.
• Processes belonging to one namespace cannot inspect or kill - in fact

cannot even know of the existence of - processes in other sibling or
parent namespaces.

• getppid() returns 0 (null).

Each process multiple PIDs

struct upid {
int nr; // the PID value
struct pid_namespace *ns; // namespace where this PID is relevant
// ...
};

struct pid {
// ...
int level; // number of upids
struct upid numbers[0]; // array of upids
};

• A single process has multiple PIDs associated with it, one for each namespace.
• In the Linux source code, we can see that a struct named pid, which used to keep track of just a

single PID, now tracks multiple PIDs through the use of a struct named upid.
• getpid() always reports the PID associated with the namespace in which the calling process of

getpid() resides

Initializing a PID namespace

• The first process created inside a PID namespace gets a process ID of
1 within the namespace.

• This process has a similar role to the init process on traditional Linux
systems.

• In particular, the init process can perform initializations required for
the PID namespace as whole

• starting other processes that should be a standard part of the namespace
• Terminating other processes if init terminates
• Reaps orphaned child processes when they terminate.
• Restrictions apply on sending signals to the init process within the namespace

i.e. signals can be sent from outside the namespace.

Initializing a PID namespace with shell

• demo_pid_namespace [options] command [arguments]
• ./demo_pid_namespace -p sh -c 'echo $$'

More complex initialization

• Execute a simple shell facility that allows the user to manually execute any
shell commands that might be needed to initialize the namespace

• ./demo_pid_namespace -p ./simple_init
• ./demo_pid_namespace –p -m ./simple_init
• mount -t proc proc /proc
• ps a
• Does it really behave like init?
• ./demo_pid_namespace -p ./simple_init –v
• ./orphan
• Shows the child is adopted by the PID namespace init process (PID

1), which reaps the child when it terminates.

demo_pid_namespace

Simple_init

Orphan 2

Orphan 3

Simple_init

Orphan 3

demo_pid_namespace

Diagram credit: LWN Namespace Series

Signals and init

• What signals can be delivered to traditional init? Why?

Signals and init

• What signals can be delivered to traditional init? Why?

• PID namespaces implement same behavior for the namespace-
specific init process.

• Parent namespace can still generate signals for the PID
namespace init process in all of the usual circumstances

• Who is the parent of all other processes then? The kernel which kills all
the other processes.

PID namespace and setns() and unshare()

• unshare() and setns() typically put the caller and not the callee into
the new namespace.

• However, not true if fd or flag is a PID namespace.
• Why?

Unshare() and setns() with PID namespace

• unshare() creates a new PID namespace but does not place the
caller in the new namespace. Instead any children created by
the caller will be placed in the new namespace; the first such
child will become the init process for the namespace.

• setns() does not move the caller to the PID namespace; instead,
children that are subsequently created by the caller will be
placed in the namespace.

Example

• Show PID namespace fails
• Sudo ./unshare –p /bin/bash
• Start a PID namespace
• ./demo_pid_namespace -p ./simple_init

• fork orphan which will join the PID namespace of simple_init
• ./setns_for_pid -f -n /proc/<PID>/ns/pid ./orphan

demo_pid_namespace setns_for_pid setns_for_pid

Diagram credit: LWN Namespace Series

demo_pid_namespace setns_for_pid setns_for_pid

Diagram credit: LWN Namespace Series

User Namespace

• Allow per-namespace mappings of user and group IDs.
• A process's user and group IDs can be different inside and outside a user

namespace.

• A process can have a normal unprivileged user ID outside a user
namespace while at the same time having a user ID of 0 inside the
namespace.

• This means that the process has full root privileges for operations inside the
user namespace, but is unprivileged for operations outside the namespace.

Creating User Namespace

child_pid = clone(childFunc, child_stack +
STACK_SIZE, CLONE_NEWUSER | SIGCHLD, argv[1]);

• Unshare(CLONE_NEWUSER)

• No privilege is required to create a user namespace.

Example

• demo_userns.c: creates a child in a new user namespace.
• Note install libcap-dev (sudo apt-get install libcap-dev –y)

• Child display its effective user and group IDs as well as its capabilities.

• The child has a full set of permitted and effective capabilities, even though
the program was run from an unprivileged account.

• the new process has a full set of capabilities in the new user namespace, it
has no capabilities in the parent namespace.

• When a user namespace is created, the first process in the namespace is
granted a full set of capabilities in the namespace.

• This allows that process to perform any initializations that are necessary in the
namespace before other processes are created in the namespace.

https://lwn.net/Articles/539941/
http://man7.org/linux/man-pages/man7/capabilities.7.html

User and groupIds in User Namespace

• user and group IDs of the child process may be different.
• Default values chosen from
/proc/sys/kernel/overflowuid and

/proc/sys/kernel/overflowgid

• Initially user and group IDs have no mapping

• Even if root employs clone(CLONE_NEWUSER), the resulting child
process will have no capabilities in the parent namespace

Who sets the mapping?

• Parent process sets the mapping of child process by writing two files
available via /proc

• /proc/PID/uid_map and /proc/PID/gid_map

UID and GID Mappings

• Records written to/read from /proc/PID/uid_map and
/proc/PID/gid_map have this form:

• ID-inside-ns ID-outside-ns length

• ID-inside-ns and length define range of IDs inside user NS that are to
be mapped

• ID-outside-ns defines start of corresponding mapped range in
“outside” user NS

• E.g., following says that IDs 0...9 inside user NS map to IDs
1000...1009 in outside user NS

• 0 1000 10

User namespaces

• Allow per-namespace mappings of UIDs and GIDs
• process’s UIDs and GIDs inside NS may be different from IDs outside NS

• Interesting use case: process may have nonzero UID outside NS, and
UID of 0 inside NS

• Process has root privileges for operations inside user NS

Diagram credit: Michael Kerrisk

User namespaces can be nested

Diagram credit: Michael Kerrisk

Example

• ./demo_userns x

• Determine PID of cloned child
• ps -C demo_userns -o 'pid uid comm’

• echo '0 1000 1' > /proc/4713/uid_map

• user ID 1000 in the parent user namespace (earlier mapped to 65534) has
been mapped to user ID 0 in the user namespace created by demo_userns.

Who sets the mapping?

• Parent process sets the mapping of child process by writing two files
available via /proc

• /proc/PID/uid_map and /proc/PID/gid_map

• The child process must use the mapping before mounting
• No privilege is required to create a user namespace.

• Program was run from unprivileged user account

"Root privileges inside a user NS”

• What does “root privileges in a user NS” mean?

• There are a number of NS types
• Each NS type governs some global resource(s); e.g.:

• UTS: hostname, NIS domain name
• Mount: set of mount point
• Network: IP routing tables, port numbers, /proc/net, ...

• There is an ownership relationship between user NSs and non-user NSs such that each non-user
NS is “owned” by a particular user NS
• When creating a new nonuser NS, kernel marks that NS as owned by the user NS of process creating the new

NS

• If a process operates on resources governed by nonuser NS:
• Permission checks are done according to process’s capabiliites in user NS that owns the nonuser NS that

governs the resources

User namespaces “govern” other namespace
types
• X is created with Unshare –Ur –u <prog>

• X is in new user NS, with root mappings and has all capabilities

• X is in a new UTS NS, which is owned by new user NS
• X is in initial instance of all other NS types (e.g network NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Diagram credit: Michael Kerrisk

Changing hostname

• Suppose X tries to change hostname (CAP_SYS_ADMIN)
• X is in second UTS NS
• Permissions checked according to X’s capabilities in user NS that owns

that UTS NS => succeeds (X has capabilities in that user NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Diagram credit: Michael Kerrisk

Changing hostname

• Suppose X tries to bind to reserved socket port
(CAP_NET_BIND_SERVICE)

• X is in initial NET NS
• Permissions checked according to X’s
capabilities in user NS that owns
that network NS => fails
(X has no capabilities in initial user NS)

“Root privileges inside a user NS”

What does “root privileges in a user NS” mean?

We’ve already seen that:

There are a number of NS types

Each NS type governs some global resource(s); e.g.:

UTS: hostname, NIS domain name

Mount: set of mount points

Network: IP routing tables, port numbers, /proc/net, ...

What we will see is that:

There is an ownership relationship between user NSs and

non-user NSs

I.e., each non-user NS is “owned” by a particular user NS

“root privileges in a user NS” == root privileges on (only)

resources governed by non-user NSs owned by this user NS

And on resources associated with descendant user NSs...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-7 §9.1

User namespaces “govern” other namespace types

Initial user namespace
creator eUID: 0

Initial network
namespace

Child user namespace
creator eUID: 1000

is ow
ned byis

ch
ild

 o
f

Initial UTS
namespace

is owned by

Second UTS
namespace

is owned by

Process X
eUID inside NS: 0

eUID in outer NS: 1000
capabilities: =ep

ismember of
is

mem
ber

ofis member of

Understanding this picture is the target of this chapter...

Linux Capabilities and Namespaces c�2018, Michael Kerrisk User Namespaces 9-8 §9.1

Diagram credit: Michael Kerrisk

