
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

Namespaces

• Is both an isolation and sharing mechanism
• A process within a namespace has its own isolated instance of the resource,

which is shared with other processes within the same namespace

• Note namespaces have no names and are identified by numbers.

Namespace management

• Creating a new namespace
• clone(function, stack, CLONE_NEW*, args)

• creates a new process and a new namespace; the new process is attached to the new
namespace.

• Joining an existing namespace
• setns(fd, nstype)

• calling process to join an existing namespace specified by the file descriptor and nstype.
• Redefining namespace

• unshare(flags)
• Disassociating parts of process execution contexts

• Discovering namespace relationships
• ioctl(fd, request)

• discovery of namespace relationships

Seven types of namespaces

These namespaces isolate resources
• PID NS: isolates pid resource
• Mount NS: isolates mount point resource
• Network NS: isolate of network system interface and device resource

• network interfaces, routing tables, DNS lookup servers, IP addresses,
subnets

• IPC NS: isolation of IPC and POSIX message queues resource
• UTS NS: isolation of hostname resource

• Exists for historical reasons
• User NS: isolates owner of a process respurce
• Cgroup: isolated view of the resource usage

Namespaces have numbers

• Each type of namespace is identified by an inode (unique)
• six entries (inodes) added to /proc/<pid>/ns/
• two processes are in the same namespace if they see the same inode

for equivalent namespace types (mnt, net, user, ...)

• lsns
• ls -l /proc/$$/ns

• ls -l /proc/<pid>/ns

Resources not yet isolated

• time namespace.
• secure keys
• device namespace

Creating a new namespace

• The clone system call helps to create a new child process in a manner
similar to fork, but provides precise control over execution context
shared between caller and callee
• Flags in the syscall help to further control what is shared
• E.g. share virtual address space, the table of file descriptors, and the table of

signal handlers.

• Flags also control if new child process in the same namespace as the
parent

Threads

Difference between creating process and thread in Linux is just different arguments to clone() syscall!

Process Vs Threads
Processes are heavyweight operations Threads are lighter weight operations

Each process has its own memory space Threads use the memory of the process they
belong to

Inter-process communication is slow as processes
have different memory addresses

Inter-thread communication can be faster than
inter-process communication because threads of
the same process share memory with the process
they belong to

Context switching between processes is more
expensive

Context switching between threads of the same
process is less expensive (Use same address space)

Processes don’t share memory with other
processes

Threads share memory with other threads of the
same process

clone()
int clone(int (*child_func)(void *), void *child_stack, int flags, void *arg);

• First argument is a pointer to a function which returns an integer.
• Cloned child does not proceed from next instruction in parent but from the first instruction specified in child_func

• child_stack specifies the location of the memory stack used by the child process.
• Note, size of stack remains unknown to the kernel as passed memory is just a pointer
• The programmer must decide how much space is required for the operations the child process will perform.

• arg is a pointer to the arguments that will pass to the function that the child process will execute.
• flags control two things:
1. child’s termination signal, which is the signal to be sent to the parent when the child terminates.
2. execution context sharing between the parent and the child

• About twenty different CLONE_* flags that control clone() shared operation, six of which create namespaces.
• The new child process is in the flag specified namespace.

• Returns processid of child on return or -1 on error.
• Cloned child terminates at exit() or child_func return. Parent process waits in the usual manner.

Clone flags

• CLONE_VM - share memory
• If the CLONE_VM flag is set, then the parent and child share the same virtual memory pages (hallmark

of threads)
• Updates to memory or calls to mmap() or munmap() by either process will be visible to the other

process.
• If the CLONE_VM flag is not set, then the child receives a copy of the parent’s virtual memory (as with

fork()).

• CLONE_FILES - share file descriptors
• If the CLONE_FILES flag is specified, the parent and the child share the same table of open file

descriptors.
• Updates to file descriptor allocation or deallocation (open(), close(), dup(), pipe(), socket(), and so on) in

either process will be visible in the other process.
• If the CLONE_FILES flag is not set, then the file descriptor table is not shared, and the child gets a copy

of the parent’s table at the time of the clone() call.

Flags

• CLONE_FS
• If the CLONE_FS flag is specified, then the parent and the child share file system related information:

umask, root directory, and current working directory.
• calls to umask(), chdir(), or chroot() in either process will affect the other process.
• If the CLONE_FS flag is not set, then the parent and child have separate copies of this information (as

with fork()).

• CLONE_SIGHAND
• Parent and child share signal dispositions

Flags for namespaces

CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN
CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN
CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN
CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN
CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN
CLONE_NEWUSER 3.8 No capability is required

Clone examples

• basic_clone
• e.c
• http://man7.org/tlpi/code/online/dist/procexec/demo_clone.c.html

http://man7.org/tlpi/code/online/dist/procexec/demo_clone.c.html

Joining an existing namespace: setns()

• The setns() system call allows the calling process to join an existing
namespace identified by fd and nstype:
• int setns(int fd, int nstype);

• Note process is always in some namespace
• setns() disassociates the calling process from one instance of a particular

namespace type and reassociates the process with another instance of the
same namespace type.

http://man7.org/linux/man-pages/man2/setns.2.html

setns()

• int setns(int fd, int nstype);

• fd argument specifies the namespace to join
• it is a file descriptor that refers to one of the symbolic links in a /proc/PID/ns directory.
• file descriptor can be obtained either by opening one of those symbolic links directly or by

opening a file that was bind mounted to one of the links.

• The nstype argument allows the caller to check the type of namespace
that fd refers to.
• If this argument is specified as zero, no check is performed.

• This can be useful if the caller already knows the namespace type, or does not care about the type.
• nstype = CLONE_NEW*
• verifies that fd is a file descriptor for the corresponding namespace type.

• Useful if the caller was passed the file descriptor via a UNIX domain socket and needs to verify what type
of namespace it refers to.

Unsharing execution contexts: unshare()

int unshare(int flags);
• Functionality similar to clone() but operates on the caller instead of

the callee
• It creates the new namespaces specified by the CLONE_NEW* bits in

its flags argument and makes the caller a member of the
namespaces.
• Main purpose of unshare() is to isolate namespace (and other) side

effects without having to create a new process or thread (as is done
by clone()).

Example of unshare

• clone(..., CLONE_NEWXXX,);
is roughly equivalent, in namespace terms, to the sequence:
if (fork() == 0)

unshare(CLONE_NEWXXX);

• Unshare is also available as a command
• unshare [options] program [arguments]
• options are command-line flags that specify the namespaces to unshare before

executing program with the specified arguments.

Namespace termination

• A namespace remains open as long there is an open resource
• Non-existence of a process does not imply non-existence of

namespace

Six namespaces

• UTS NS: uts (unix timesharing - domain name, etc) CLONE_NEWUTS
• PID NS: pid (processes) CLONE_NEWPID

• Mount NS: mnt (mount points, filesystems) CLONE_NEWNS
• User NS: user (UIDs) CLONE_NEWUSER

• Network NS: net (network stack) CLONE_NEWNET
• IPC NS: ipc (System V IPC) CLONE_NEWIPC

Previlige for namespaces

CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN
CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN
CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN
CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN
CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN
CLONE_NEWUSER 3.8 No capability is required

Namespaces with clone

• CLONE_NEW* bits is specified in the call, then a new namespace of
the corresponding type is created, and the new process is made a
member of that namespace; multiple CLONE_NEW* bits can be
specified in flags.

Hostname Namespace

• isolate two system identifiers—nodename and domainname—
returned by the uname() system call
• the names are set using the sethostname() and setdomainname() system

calls.
• In the context of containers, the UTS namespaces feature allows each

container to have its own hostname and NIS domain name.
• UTS namespaces are useful for initialization and configuration scripts

that tailor their actions based on these names.
• The term "UTS" derives from the name of the structure passed to the

uname() system call: struct utsname. The name of that structure in
turn derives from "UNIX Time-sharing System".

UTS namespace with CLONE_NEWUTS

child_pid = clone(childFunc, child_stack +
STACK_SIZE, CLONE_NEWUTS | SIGCHLD, argv[1]);
printf("PID of child created by clone() is
%ld\n", (long) child_pid);

• As with most other namespaces (user namespaces are the exception),
creating a UTS namespace requires privilege
(specifically, CAP_SYS_ADMIN)

Example 1

• Demo_uts_namespace.c
• Show two different namespaces
• Show namespace does not exist

• Force existence
• # touch ~/uts # Create mount point
• # mount --bind /proc/<CHILD_PID>/ns/uts ~/uts

• setns.c
• ./setns ~/uts /bin/bash
• # hostname
• # ls –l /proc/$$/ns/

Example 2

• Unshare.c
• # echo $$

• # Show PID of shell
• # cat /proc/<PID>/mounts | grep mq

• # Show one of the mounts in namespace
• # sudo ls -l /proc/<PID>/ns/

• # Show mount namespace ID
• # ./unshare -m /bin/bash

• # Start new shell in separate mount namespace
• # sudo ls -l /proc/$$/ns/

• # Show mount namespace ID

