
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

Real User ID and Read Group ID

• The real user ID and group ID identify the user and group to which the
process belongs.
• A login shell gets its real user and group IDs from the third and fourth fields of

the user’s password record in the /etc/passwd file

• When a new process is created (e.g., when the shell executes a
program), it inherits these identifiers from its parent.

Effective User ID and Effective Group ID

• Used to determine the privilege granted to a process when it tries to
perform various operations
• Privilege granted to a process when it accesses resources such as files and

System V interprocess communication (IPC) objects, which themselves have
associated user and group IDs determining to whom they belong.
• The effective user ID is also used by the kernel to determine whether one

process can send a signal to another.

• Process with effective userid = 0 has all the privileges of a superuser.
• Certain system calls can be executed only by privileged processes.

Changing EID and EGID

• Normally, the effective user and group IDs have the same values as
the corresponding real IDs.
• Two ways in which the effective IDs can assume different values.
• use of system calls
• execution of set-user-ID and set-group-ID programs

Effective User ID and Effective Group ID

• When a process executes a file by execve it keeps its 3 userids unless
the set user id bit on the file is set in which case:
• If the file executed is a set-userID file, the effective and saved user IDs of the

process are set to the owner of the file executed.
• If the file executed is a set-group-ID file, the effective and saved group IDs of

the process are set to the group of the file executed.

• If the file executed is not a set-user-ID or set-group-ID file, the
effective user ID, saved user ID, effective group ID, and saved group ID
are not changed.

Saved set user ID and Saved set group-ID

If the set-user-ID (set-group-ID) permission bit is enabled on the
executable, then
• the effective user (group) ID of the process is made the same as the

owner of the executable.
If the set-user-ID (set-group-ID) bit is not set, then
• no change is made to the effective user (group) ID of the process.
• The values for the saved set-user-ID and saved set-group-ID are

copied from the corresponding effective IDs. This copying occurs
regardless of whether the set-user-ID or set-group-ID bit is set on the
file being executed.

Example

• sudo -i
Password:

• ls -l prog

• chmod u+s prog

• chmod g+s prog

• ls -l prog

Example 1

• Suppose that a process whose real user ID, effective user ID, and
saved set-user-ID are all 1000 execs a set-user-ID program owned by
root (user ID 0). After the exec, the user IDs of the process will be
changed as?

Modifying

Process Credent ia ls 181

Note the following supplementary information to Table 9-1:

z The glibc implementations of seteuid() (as setresuid(–1, e, –1)) and setegid() (as
setregid(–1, e)) also allow the effective ID to be set to the same value it already
has, but this is not specified in SUSv3. The setegid() implementation also
changes the saved set-group-ID if the effective user ID is set to a value other
than that of the current real user ID. (SUSv3 doesn’t specify that setegid() makes
changes to the saved set-group-ID.)

z For calls to setreuid() and setregid() by both privileged and unprivileged pro-
cesses, if r is not –1, or e is specified as a value different from the real ID prior
to the call, then the saved set-user-ID or saved set-group-ID is also set to the
same value as the (new) effective ID. (SUSv3 doesn’t specify that setreuid() and
setregid() make changes to the saved set IDs.)

z Whenever the effective user (group) ID is changed, the Linux-specific file-system
user (group) ID is changed to the same value.

z Calls to setresuid() always modify the file-system user ID to have the same value
as the effective user ID, regardless of whether the effective user ID is changed
by the call. Calls to setresgid() have an analogous effect on the file-system group ID.

Table 9-1: Summary of interfaces used to change process credentials

Interface Purpose and effect within: Portability

unprivileged process privileged process

setuid(u)
setgid(g)

Change effective ID to the
same value as current real
or saved set ID

Change real,
effective, and
saved set IDs to
any (single) value

Specified in SUSv3;
BSD derivatives
have different
semantics

seteuid(e)
setegid(e)

Change effective ID to the
same value as current real
or saved set ID

Change effective
ID to any value

Specified in SUSv3

setreuid(r, e)
setregid(r, e)

(Independently) change
real ID to same value as
current real or effective
ID, and effective ID to
same value as current real,
effective, or saved set ID

(Independently)
change real and
effective IDs to
any values

Specified in SUSv3,
but operation
varies across
implementations

setresuid(r, e, s)
setresgid(r, e, s)

(Independently) change
real, effective, and saved
set IDs to same value as
current real, effective, or
saved set ID

(Independently)
change real,
effective, and
saved set IDs to
any values

Not in SUSv3 and
present on few
other UNIX
implementations

setfsuid(u)
setfsgid(u)

Change file-system ID to
same value as current real,
effective, file system, or
saved set ID

Change file-system
ID to any value

Linux-specific

setgroups(n, l) Can’t be called from an
unprivileged process

Set supplementary
group IDs to any
values

Not in SUSv3, but
available on all UNIX
implementations

One-way trip!
once a privileged process
has changed its identifiers
in this way, it loses all
privileges and
therefore can’t
subsequently use
setuid() to reset
the identifiers back to 0.

when executing a
set-user-ID program

Example 2

Setuid-ex.c

Principle of least privilege

• A process may only reduce its privileges.
• A process may not gain any privileges, with one exception: a process

that execs a program from a file that has a setuid or setgid flag set
gains the privileges expressed by this flag.

• Helps reduce the "attack surface" of the computer by eliminating
unnecessary privileges that can result in network exploits and
computer compromises.

Hold privileges only when required

• In a set-user-ID program

• The first call makes the effective user ID of the calling process the same as its real ID.
• The second call restores the effective user ID to the value held in the saved set- user-ID.

784 Chapter 38

38.1 Is a Set-User-ID or Set-Group-ID Program Required?
One of the best pieces of advice concerning set-user-ID and set-group-ID programs
is to avoid writing them whenever possible. If there is an alternative way of per-
forming a task that doesn’t involve giving a program privilege, we should generally
employ that alternative, since it eliminates the possibility of a security compromise.

Sometimes, we can isolate the functionality that needs privilege into a separate
program that performs a single task, and exec that program in a child process as
required. This technique can be especially useful for libraries. One example of such
a use is provided by the pt_chown program described in Section 64.2.2.

Even in cases where a set-user-ID or set-group-ID is needed, it isn’t always nec-
essary for a set-user-ID program to give a process root credentials. If giving a pro-
cess some other credentials suffices, then this option should be preferred, since
running with root privileges opens the gates to possible security compromises.

Consider a set-user-ID program that needs to allow users to update a file on
which they do not have write permission. A safer way to do this is to create a dedi-
cated group account (group ID) for this program, change the group ownership of
the file to that group (and make the file writable by that group), and write a set-
group-ID program that sets the process’s effective group ID to the dedicated
group ID. Since the dedicated group ID is not otherwise privileged, this greatly
limits the damage that can be done if the program contains bugs or can otherwise
be subverted.

38.2 Operate with Least Privilege
A set-user-ID (or set-group-ID) program typically requires privileges only to per-
form certain operations. While the program (especially one assuming superuser
privileges) is performing other work, it should disable these privileges. When privileges
will never again be required, they should be dropped permanently. In other words,
the program should always operate with the least privilege required to accomplish the
tasks that it is currently performing. The saved set-user-ID facility was designed for
this purpose (Section 9.4).

Hold privileges only while they are required
In a set-user-ID program, we can use the following sequence of seteuid() calls to tem-
porarily drop and then reacquire privileges:

uid_t orig_euid;

orig_euid = geteuid();
if (seteuid(getuid()) == -1) /* Drop privileges */
 errExit("seteuid");

/* Do unprivileged work */

if (seteuid(orig_euid) == -1) /* Reacquire privileges */
 errExit("seteuid");

/* Do privileged work */

Drop them when not required

• If a set-user-ID or set-group-ID program finishes all tasks that require privileges,
then it should drop its privileges permanently in order to eliminate any security
risk that could occur because the program is compromised by a bug or other
unexpected behavior.

General points on changing process credentials

• Drop privileges permanently before execing another program

• Avoid executing a shell (or other interpreter) with privileges

• Close all unnecessary file descriptors before an exec()

Difference between su and sudo

• su: "become" root (su = superuser)
• su - username: "become" username, using initialization files
• sudo command: Execute command as root (if youre in /etc/sudoers

and you give your password.)

Chroot syscall

#include <unistd.h>
int chroot(const char *pathname);
• Returns 0 on success, or –1 on error

• chroot changes apparent root directory for current running process
and its children.
• System call defined in uninstd.h

Chroot command

• chroot <root for process> <command to run>

• Launch a process but can tell it another directory to adopt and record
as its root.

chroot

• Each PCB stores the root directory of a process.
• Just the name of some directory in the filesystem.
• The process's root directory, unlike the filesystem's, is virtual rather than physical.

• Most processes' root directories are /, the filesystem's root.
• The process has visibility over the entire filesystem.

• When the operating system interprets filenames that appear in the
process's code, it does so relative to whatever physical directory the
process names as its root.
• Example: root: /home/joe

fopen(/etc/passwd, rw)
• Technically opening /home/joe/etc/passwd

chroot

• The effect is to blind the process to any part of the physical filesystem
except the part under the process's root.
• New processes inherit their parent process's root directory, any

spawned processes will be similarly blind. The security implication is
protection of most of the filesystem from the code in the process.

Why?

• For programs like ftp.
• As a security measure, when a user logs in anonymously under FTP, the ftp

program uses chroot() to set the root directory for the new process to the
directory specifically reserved for anonymous logins.
• After the chroot() call, the user is limited to the file-system subtree under

their new root directory, so they can’t roam around the entire file system.

Example
• Running ls vs running date
mkdir /tmp/example
cp /bin/ls /tmp/example/ls
chroot /tmp/example /ls

chroot: failed to run command ‘ / l s ’: No such file or directory
cp −r /lib64 /tmp/example/lib64
mkdir −p /tmp/example/lib
cp −r /lib/x86_64−linux−gnu /tmp/example/lib/x86_64−linux−gnu
chroot /tmp/example /ls

/ls: error while loading shared libraries: libpcre2−8.so.0: cannot o
cp /usr/lib/x86_64−linux−gnu/libpcre2−8* /tmp/example/lib/x86_64−l
chroot /tmp/example /ls / lib lib64 ls
chroot /tmp/example /ls /.. lib lib64 ls

Chroot is a jail

• Once you are inside a jail, you cannot see any file outside of the jail.

• Therefore, you need to copy a number of commands and libraries into
the jail first; otherwise, there is not much you can do.

• It is not sufficient to just copy commands; their dependencies must
also be copied.
• most programs are dynamically linked against shared libraries. Therefore, we

must either limit ourselves to executing statically linked programs, or replicate
a standard set of system directories containing shared libraries (including, for
example, /lib and /usr/lib) within the jail

Example

• Running ls vs running date

Jails can be broken: Links and chroot

• Symbolic links to directories outside the jail can’t be reached
• Hard links that reaches outside the jail directory tree compromises

the jail.

$ln /usr/bin/emacs subdir/bin/emacs
$ln /dev/tty subdir/dev/tty
$ln /dev/disk/00 subdir/dev/disk/00

Access as root and then go to other parts of root filesystem

Sympolic Vs Hard Links

Symbolic vs Hard Links

• Symbolic links:
• has only the path of the original file, not the contents
• permissions of symlinks don’t matter, permissions cascade to the source
• can cross the file system
• allows you to link between directories

• Hard Link
• has the same inodes number and permissions of original file
• permissions will be updated if we change the permissions of source file
• has the actual contents of original file, so that you still can view the contents, even if

the original file moved or removed.
• can’t cross the file system boundaries
• can’t link directories

Why hardlinks?

• rm command
• ls –li | grep <inode>

• $ ls -id .
1069765 ./

• $ mkdir tmp ; cd tmp
• $ ls -id ..

1069765 ../

• On Unix filesystems .. is a real directory entry; it is a hard link pointing back
to the previous directory.
• no size or speed penalty

Other ways to break the jail-1

• Calling chroot() doesn’t change the process’s current working
directory. Thus, a call to chroot() is typically preceded or followed by a
call to chdir() (e.g., chdir(“/”) after the chroot() call).
• If this is not done, then a process can use relative pathnames to

access files and directories outside the jail.

Other ways to break the jail-2

Open File descriptors: If a process holds an open file descriptor for a
directory outside the jail, then the combination of fchdir() plus chroot()
can be used to break out of the jail, as shown in the following code
sample:
int fd;
fd = open("/", O_RDONLY);
chroot("/home/mtk"); /* Jailed */
fchdir(fd);
chroot("."); /* Out of jail */
To prevent this possibility, we must close all open file descriptors
referring to directories outside the jail.

Other ways to break a jail-3

• The jailed process can still use a UNIX domain socket to receive a file
descriptor (from another process) referring to a directory outside the
jail. By specifying this file descriptor in a call to fchdir(), the program
can set its current working directory outside the jail and then access
arbitrary files and directories using relative pathnames.

Chroot impracticaliity

• some things make chroot impractical in general: seems like one needs
extra copies of most of the system hard to communicate between
separate roots requires administrator permissions to configure
dangerous to let normal users configure b/c they could confuse
priviliged (set-user-ID) programs like sudo

Example

• What scenarios does chroot make most/least sense for?
A. the rendering part of web browser
B. a web server
C. a media player
D. a network time server (for other machines to set their clocks)

Capabilities: Problems with Privileges

• Previleges: a binary system of privileged and non-privileged processes
• Either your process could do everything—make admin-level kernel

calls—or is restricted to the subset of a standard user
• Capabilities: more nuanced
• Only needed for system-level tasks.
• Come into action during the execution of the process.
• Most of the time under the hood

Capabilities

• Effective capabilities (CapEff): capabilities that will be verified for each
privilege action (If the process/thread wants to perform the action, the
capability needs to be in this set while doing it)
• Permitted capabilities (CapPrm): capabilities that can be introduced into

effective when needed using syscalls; once dropped never acquired
• Inherited capabilities (CapInh)
• Ambient capabilities set (CapAmb)
• Bounding set (CapBnd): capabilities superset, nothing more than this can

be done

Checking capabilities

$ capsh —print
$ grep Cap /proc/$BASHPID/status
$ capsh —decode=0000000000000000
$ sudo –l
$ sudo capsh --print

The case of privileged command

• Consider a privileged command that all users should be able to run
• Currently, there are the following ways to achieve this:
• Add all users to sudo group
• Add entries for all users in sudoers file (to allow users to run ping command)
• Set setuid bit on ping binary
• Set specific capability (CAP_NET_RAW) on ping binary

CAP_NET_RAW capability enables a process to
• use RAW and PACKET sockets;
• bind to any address for transparent proxying.

