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Kernel Process States

• Involuntary termination from ready and wait state.



Parent-child state
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Figure 24-1: Overview of the use of fork(), exit(), wait(), and execve()

24.2 Creating a New Process: fork()
In many applications, creating multiple processes can be a useful way of dividing
up a task. For example, a network server process may listen for incoming client
requests and create a new child process to handle each request; meanwhile, the
server process continues to listen for further client connections. Dividing tasks up
in this way often makes application design simpler. It also permits greater concur-
rency (i.e., more tasks or requests can be handled simultaneously).

The fork() system call creates a new process, the child, which is an almost exact
duplicate of the calling process, the parent.
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Process Creation/ Coordination

• fork() 
• Create a child process
• Identical to parent EXCEPT for return value of fork() call 
• Determines child/parent 

• getpid() / getppid() 

• Get process ID of the currently running process 
• Get parent process ID 

• exec() family 
• Replace currently running process with a different image 
• Process becomes something else losing previous code 

• Focus on execvp() 

• wait() / waitpid() 
• Wait for any child to finish (wait) 
• Wait for a specific child to finish (waitpid) 
• Get return status of child 



Waiting for a child to finish –
wait() 
#include <sys/types.h> 
#include <wait.h> 
pid_t wait(int *status); 
• Suspends/blocks calling process until child has finished 
• Allow parent to be able to monitor the children to find out when and how they 

terminate. 
• Returns: 

• Process ID of a terminated child on success 
• -1 on error, sets errno

• Parameters: 
• status: is a memory buffer set by wait in which termination status of child is populated, and 

evaluated using specific macros defined for wait.



Example n.c

• Observe wait for each child by a parent
• child_wait.c
• child_status.c
• child_allstatus.c



Wait() limitations

• The wait() system call has a number of limitations:
• If a parent process has created multiple children, it is not possible to wait() for 

the completion of a specific child; we can only wait for the next child that 
terminates. 
• If no child has yet terminated, wait() always blocks. Sometimes, it would be 

preferable to perform a nonblocking wait so that if no child has yet 
terminated, we obtain an immediate indication of this fact. 



Waiting for specific child to finish—
waitpid()
#include <sys/types.h> 
#include <sys/wait.h> 
pid_t waitpid(pid_t pid, int *statloc, int options) 
• Returns:

• process ID : if OK, 
• 0 : if non-blocking option && no zombies around 
• -1 : on error 

• Parameters:
• Pid o child process
• statloc: status 
• options



wait() Vs waitPID()

Wait() Waitpid()

wait blocks the caller until a child process terminates waitpid can be either blocking or non-
blocking:If options is 0, then it is blocking
If options is WNOHANG, then is it non-blocking

if more than one child is running then wait() returns 
the first time one of the parent's offspring exits

waitpid is more flexible:
If pid == -1, it waits for any child process. In this 
respect, waitpid is equivalent to wait
If pid > 0, it waits for the child whose process ID 
equals pid
If pid == 0, it waits for any child whose process group 
ID equals that of the calling process
If pid < -1, it waits for any child whose process group 
ID equals that absolute value of pid



Example

• Observe waiting for a specific child
• Get status of the exited child
• Several children



Definition of Signal

• Signal: A notification of an event 
• Event gains attention of the OS 
• OS stops the application process immediately, sending it a signal 
• Default action for that signal executes 

• Can install a signal handler to change action 
• Application process resumes where it left off



Flow of actions

Process 1

Kernel

Process 2

1. Generate a signal
2. Kernel state

3. Deliver signal

A pending signal is delivered to a process (here Process 2) as soon as it is next scheduled to run, 
or immediately if the process is already running 



Execution Flow with Signal Handler

• Handler code is within the main program

Signals:  Fundamenta l  Concepts 399

Invocation of a signal handler may interrupt the main program flow at any
time; the kernel calls the handler on the process’s behalf, and when the handler
returns, execution of the program resumes at the point where the handler inter-
rupted it. This sequence is illustrated in Figure 20-1.

Figure 20-1: Signal delivery and handler execution

Although signal handlers can do virtually anything, they should, in general, be
designed to be as simple as possible. We expand on this point in Section 21.1.

Listing 20-1: Installing a handler for SIGINT
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/ouch.c
#include <signal.h>
#include "tlpi_hdr.h"

static void
sigHandler(int sig)
{
    printf("Ouch!\n");                  /* UNSAFE (see Section 21.1.2) */
}

int
main(int argc, char *argv[])
{
    int j;

    if (signal(SIGINT, sigHandler) == SIG_ERR)
        errExit("signal");
    
    for (j = 0; ; j++) {
        printf("%d\n", j);
        sleep(3);                       /* Loop slowly... */
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/ouch.c

start of program

instruction m

instruction m+1

Main program

Code of
signal handler
is executed

return

Signal handler

Program
resumes at
point of interruption

1

Delivery
of signal 2

4

Kernel calls signal
handler on behalf
of process

exit()

3

flow
 of execution



Some important signals (man 7 signal )
Reason Name Default Action Usual Use

User types Ctrl-C SIGINT Terminate (Can be caught) Stop a process nicely

Kill -2 SIGQUIT Terminate (Can be caught) Stop a process harshly 
producing a core dump
(https://sigquit.wordpress.co
m/tag/core_pattern/)

Ctrl-Z SIGSTOP Stop Process (Cannot be caught) Suspends a process

fg SIGCONT Continues a process Starts after a stop

Kill -9 SIGKILL Terminate Process (Cannot be 
caught)

You want the process gone 
with no memory image

Process makes illegal memory reference SIGSEGV Terminate Generated by buggy program

Division by 0 SIGFPE Floating point exception Unsupported operation

https://sigquit.wordpress.com/tag/core_pattern/


Signal Flow

• Sending Signals
• Handling Signals
• Blocking Signals



Sending Signals 

1. Via Keystrokes
• Ctrl-c -> 2/SIGINT signal 

• Default action is “terminate” 
• Ctrl-z -> 20/SIGTSTP signal 

• Default action is “stop until next 18/SIGCONT” 
• Ctrl-\ -> 3/SIGQUIT signal –Default action is “terminate”

2. Via Commands
• kill –2 1234 or kill -SIGINT 1234 

• Same as pressing Ctrl-c if process 1234 is running in foreground

3. Via System Calls
• In your program through kill() or raise() function
• Example: raise(SIGSTOP)



Via System Calls

• raise() 
int raise(int iSig); 
• Commands OS to send a signal of type iSig to the current process 
• Returns 0 to indicate success, non-0 to indicate failure 

Example 
int ret = raise(SIGINT); /* Process commits suicide. */ 
assert(ret != 0); /* Shouldn't get here. */



Via System Calls

• kill() 
int kill(pid_t iPid, int iSig);
• Sends a iSig signal to the process whose id is iPid
• Equivalent to raise(iSig) when iPid is the id of current process 

• Example 
pid_t iPid = getpid(); /* Process gets its id.*/ 
kill(iPid, SIGINT); /* Process sends itself a SIGINT signal (commits 
suicide) */ 



Kill

• #include <signal.h>
int kill(pid_t pid, int sig); 
• Returns 0 on success, or –1 on error 

• If pid > 0, the signal is sent to the process with the process ID specified by 
pid. 
• If pid = 0, the signal is sent to every process in the same process group as 

the calling process, including the calling process itself. 
• If pid < –1, the signal is sent to all of the processes in the process group 

whose ID equals the absolute value of pid. 
• If pid = –1, the signal is sent to every process for which the calling process 

has permission to send a signal, except init (process ID 1) and the calling 
process. If a privileged process makes this call, then all processes on the 
system will be signaled, except for these last two. 



Handling Signals

• Each signal type has a default action 
• Terminate
• Ignore
• Generate core dump
• Stop execution
• Resume execution

• A program can install a signal handler to change action of (almost) 
any signal type
• Signal handler should be designed to be as simple as possible. 



Uncatchable signals

Special cases: A program cannot install a signal handler for signals of 
type:
• 9/SIGKILL – Default action is “terminate” 
• Catchable termination signal is 15/SIGTERM 
• To kill ”wild” processes or perform full system shutdown process, which sends 

TERM first and if not then SIGKILL

• 19/SIGSTOP – Default action is “stop until next 18/SIGCONT” 
• Catchable suspension signal is 20/SIGTSTP



Catchable signals

• SEGV: accessing an illegal memory address

• BUS: accessing a memory address with invalid alignment.

• Catchable signals
• On catching perform some cleanup - kill child processes, perhaps 

remove temporary files, etc.



Installing a Signal Handler 

• signal() 
sighandler_t signal(int iSig, sighandler_t pfHandler); 

• Installs function pfHandler as the handler for signals of type iSig
• pfHandler is a function pointer: typedef void (*sighandler_t)(int)
• After call, (*pfHandler) is invoked whenever process receives a signal 

of type iSig



Examples

• Catch-Ctrl-c.c: single handler for SIGINT

• Establishing the same handler for two different signals 



Predefined Signal Handler: SIG_IGN 

• Predefined value: SIG_IGN
Can use as argument to signal() to ignore signals 

int main(void) { 
void (*pfRet)(int); 
pfRet = signal(SIGINT, SIG_IGN); ... 
} 
• Subsequently, process will ignore 2/SIGINT signals 



Predefined Signal Handler; SIG_DFL

• Predefined value: SIG_DFL

• Can use as argument to signal() to restore default action 
int main(void) {
void (*pfRet)(int);
pfRet = signal(SIGINT, somehandler); ...
pfRet = signal(SIGINT, SIG_DFL);
... 
} 
• Subsequently, process will handle 2/SIGINT signals using default action for 

2/SIGINT signals (“terminate”) 



Example

• Signal-predefined.c



Pending signals

• Why? There is a brief period of time between the time a signal is 
generated and the time a signal is delivered (i.e. the action for the 
signal is taken). If another signal in generated during this time 
problems can arise. 
• Problematic situation as race conditions may arise. 



Blocking Signals

• To block a signal is to queue it for delivery at a later time 
• Differs from ignoring a signal 
• Each process has a signal mask in the kernel 
• OS uses the mask to decide which signals to deliver 
• User program can modify mask with sigprocmask()



Blocking Signals in General

• sigprocmask() 
int sigprocmask(int iHow, const sigset_t *psSet, sigset_t *psOldSet); 
• psSet: Pointer to a signal set 
• psOldSet: (Irrelevant for our purposes) 
• iHow: How to modify the signal mask 

• SIG_BLOCK: Add psSet to the current mask 
• SIG_UNBLOCK: Remove psSet from the current mask 
• SIG_SETMASK: Install psSet as the signal mask 
• Returns 0 iff successful 

• Functions for constructing signal sets 
• sigemptyset(), sigaddset(), …



Example
sigset_t sSet; 

int main(void) { 

int iRet; 

sigemptyset(&sSet); 

sigaddset(&sSet, SIGINT); 
iRet = sigprocmask(SIG_BLOCK, &sSet, NULL); 

assert(iRet == 0); 

if (iFlag == 0) { 

/* Do something */ 

} 

iRet = sigprocmask(SIG_UNBLOCK, &sSet, NULL); 

assert(iRet == 0); 

… 
}



Blocking Signals in Handlers

• How to block signals when handler is executing? 
• While executing a handler for a signal of type x, all signals of type x are 

blocked automatically 
• When/if signal handler returns, block is removed 

• Additional signal types to be blocked can be defined at time of 
handler installation…



Example

• count-ctrl-c.c



Installing a Handler with Blocking

sigaction() 
int sigaction(int iSig, const struct sigaction *psAction, struct sigaction *psOldAction); 
• iSig: The type of signal to be affected 
• psAction: Pointer to a structure containing instructions on how to handle signals of type 

iSig, including signal handler name and which signal types should be blocked 
• psOldAction: (Irrelevant for our purposes) 
• Installs an appropriate handler 
• Automatically blocks signals of type iSig
• Returns 0 iff successful 

Note: More powerful than signal()



The special case of init

• The init process (process ID 1), which runs with user and group of 
root, is a special case. It can be sent only signals for which it has a 
handler installed. This prevents the system administrator from 
accidentally killing init, which is fundamental to the operation of the 
system. 



Isolation



What is a jail?
Is the prisoner isolated?



Isolation

• Property 1: Isolation is as strong as the mechanism of isolation. 
• Property 2: Even a strong isolation may also get compromised. 



Isolation

• Isolation in a computing system is a mechanism or protocol to restrict 
an object A from influencing operation of object B and vice versa.



Isolation

• Will another process's actions cause the host OS to make the exactly 
same transition that is supposed to be made by the guestOS?
• What does hostOS need to verify the transition?
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Figure 1.6: Virtualization Isomorphism.

To this end, we note that abstractions could be applied at the hardware or software levels. At

the hardware level, components are physical (e.g., CPU and RAM). Conversely, at the software

level, components are logical (e.g., RMI and RPC). In this chapter we are most concerned with

abstractions at the software or near the hardware/software levels.

1.3.2 Well-Defined Interfaces
A system (or subsystem) interface is defined as a set of function calls that allows leveraging the

underlying systems functionalities without needing to know any of its details. The two most pop-

ular interfaces in systems are the Application Programming Interface (API) and the Instruction

Set Architecture (ISA) interface. Another interface that is less popular, yet very important (es-

pecially in virtualization), is the Application Binary Interface (ABI). API is used by high-level

language (HLL) programmers to invoke some library or OS features. An API includes data types,

data structures, functions, and object classes, to mention a few. An API enables compliant ap-

plications to be ported easily (via recompilation) to any system that supports the same API. As

the API deals with software source codes, the ABI is a binary interface. The ABI is essentially

a compiled version of the API. Hence, it lies at the machine language level. With ABI, system

functionalities are accessed through OS system calls. OS system calls provide a specific set of

operations that the OS can perform on behalf of user programs. A source code compiled to a spe-

cific ABI can run unchanged only on a system with the same OS and ISA. Finally, ISA defines a

set of storage resources (e.g., registers and memory) and a set of instructions that allows manip-

ulating data held at storage resources. ISA lies at the boundary between hardware and software.

As discussed later in the chapter, ABI and ISA are important in defining virtual machine types.

1.4 What is Virtualization?
Formally, virtualization involves the construction of an isomorphism that maps a virtual guest

system to a real host system [48]. Fig. 1.6 illustrates the virtualization process. The function V
in the figure maps guest state to host state. For a sequence of operations, e, that modifies a guest

S’i S’j

V(S’j)

V(S’i)



• There are two primary methods:
• Credentials and Privileges: By determining the identity of the user 

executing the process and their privilege?
• Access control: And what permissions do they have?

Process Isolation



Access Control via Permissions

• UNIX is a multi-user system. 
• Every file and directory in your account can be protected from or made 

accessible to other users by changing its access permissions.

• Every user has responsibility for controlling access to their files.



Permissions

• Permissions for a file or directory may be any or all of:
r - read (4)
w - write (2)
x – execute (1) = running a program 
• Each permission (rwx) can be controlled at three levels:
u - user = yourself 
g - group = can be people in the same project 
o - other = everyone on the system



Process Credentials

• Numerical identity of the process within userspace.

• Credentials can be changed by acquiring and loosing privileges. 



Determining Identity

• whoami: name associated with current uid
• Each user has a unique UID
• root is designated superuser with uid = 0

• Id is associated with a credential. 



Determining Process Credentials

• Every process has a set of associated numeric user identifiers (UIDs) 
and group identifiers (GIDs). 

• These identifiers are as follows:
• real user ID and group ID;
• effective user ID and group ID;
• saved set-user-ID and saved set-group-ID; 

• 3 user IDs: ruid, euid, suid
• 3  groupids: rgid, egid, sgid



Real User ID and Read Group ID

• The real user ID and group ID identify the user and group to which the 
process belongs. 
• A login shell gets its real user and group IDs from the third and fourth fields of 

the user’s password record in the /etc/passwd file 

• When a new process is created (e.g., when the shell executes a 
program), it inherits these identifiers from its parent. 



Effective User ID and Effective Group ID

• Used to determine the privilege granted to a process when it tries to 
perform various operations
• Privilege granted to a process when it accesses resources such as files and 

System V interprocess communication (IPC) objects, which themselves have 
associated user and group IDs determining to whom they belong. 
• The effective user ID is also used by the kernel to determine whether one 

process can send a signal to another. 

• Process with effective userid = 0 has all the privileges of a superuser.
• Certain system calls can be executed only by privileged processes. 



Changing EID and EGID

• Normally, the effective user and group IDs have the same values as 
the corresponding real IDs.
• Two ways in which the effective IDs can assume different values. 
• use of system calls 
• execution of set-user-ID and set-group-ID programs



Effective User ID and Effective Group ID

• When a process executes a file by execve it keeps its 3 userids unless 
the set user id bit on the file is set in which case:
• If the file executed is a set-userID file, the effective and saved user IDs of the 

process are set to the owner of the file executed. 
• If the file executed is a set-group-ID file, the effective and saved group IDs of 

the process are set to the group of the file executed. 

• If the file executed is not a set-user-ID or set-group-ID file, the 
effective user ID, saved user ID, effective group ID, and saved group ID 
are not changed.



Saved set user ID and Saved set group-ID

If the set-user-ID (set-group-ID) permission bit is enabled on the 
executable, then 
• the effective user (group) ID of the process is made the same as the 

owner of the executable. 
If the set-user-ID (set-group-ID) bit is not set, then 
• no change is made to the effective user (group) ID of the process. 
• The values for the saved set-user-ID and saved set-group-ID are 

copied from the corresponding effective IDs. This copying occurs 
regardless of whether the set-user-ID or set-group-ID bit is set on the 
file being executed. 


