
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

File: dup

#include <unistd.h>
int dup(int oldfd)
• Takes oldfd, an open file descriptor, and returns a new descriptor that

refers to the same open file description.
• The new descriptor is guaranteed to be the lowest unused file

descriptor.
• Returns

(new) file descriptor on success, or –1 on error
• newfd = dup(1);

Example

main() {

int fd1, fd2;

fd1 = open("file1", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = open("file1", O_WRONLY);

}

Example

main() {

int fd1, fd2;

fd1 = open("file1", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = open("file1", O_WRONLY);

write(fd1, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fd1);

close(fd2);

}

Example

#include <fcntl.h>

#include <stdio.h>

main() {

int fd1, fd2;

fd1 = open("file2", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = dup(fd1);

write(fd1, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fd1);

close(fd2);

}

Kernel Process States

• Involuntary termination from ready and wait state.

Parent-child state

Process Creat ion 515

Figure 24-1: Overview of the use of fork(), exit(), wait(), and execve()

24.2 Creating a New Process: fork()
In many applications, creating multiple processes can be a useful way of dividing
up a task. For example, a network server process may listen for incoming client
requests and create a new child process to handle each request; meanwhile, the
server process continues to listen for further client connections. Dividing tasks up
in this way often makes application design simpler. It also permits greater concur-
rency (i.e., more tasks or requests can be handled simultaneously).

The fork() system call creates a new process, the child, which is an almost exact
duplicate of the calling process, the parent.

Memory of
 parent copied to child

Execution of parent

suspended

A

Parent process
running program “A”

Child process
running program “A”

Parent may perform
other actions here

Execution of
program “B”

B

Child may perform
further actions here

Kernel restarts parent and
optionally delivers SIGCHLD

fork()

execve(B, ...)
(optional)

exit(status)

wait(&status)
(optional)

Child status

passed to parent

A

Process Creation/ Coordination

• fork()
• Create a child process
• Identical to parent EXCEPT for return value of fork() call
• Determines child/parent

• getpid() / getppid()

• Get process ID of the currently running process
• Get parent process ID

• exec() family
• Replace currently running process with a different image
• Process becomes something else losing previous code

• Focus on execvp()

• wait() / waitpid()
• Wait for any child to finish (wait)
• Wait for a specific child to finish (waitpid)
• Get return status of child

Listing

• child_fork.c

Creating a Process: fork()

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
• Create a child process
• The child is an (almost) exact copy of the parent
• The new process and the old process both continue in parallel from the

statement that follows the fork()
• Returns:
• To child: 0 on success
• To parent: process ID of the child process or -1 on error, sets errno

What makes up a process?

Processes 119

Figure 6-1: Typical memory layout of a process on Linux/x86-32

The upshot of locality of reference is that it is possible to execute a program while
maintaining only part of its address space in RAM.

A virtual memory scheme splits the memory used by each program into small,
fixed-size units called pages. Correspondingly, RAM is divided into a series of page
frames of the same size. At any one time, only some of the pages of a program need
to be resident in physical memory page frames; these pages form the so-called
resident set. Copies of the unused pages of a program are maintained in the swap
area—a reserved area of disk space used to supplement the computer’s RAM—and
loaded into physical memory only as required. When a process references a page
that is not currently resident in physical memory, a page fault occurs, at which point
the kernel suspends execution of the process while the page is loaded from disk
into memory.

On x86-32, pages are 4096 bytes in size. Some other Linux implementations
use larger page sizes. For example, Alpha uses a page size of 8192 bytes, and
IA-64 has a variable page size, with the usual default being 16,384 bytes. A pro-
gram can determine the system virtual memory page size using the call
sysconf(_SC_PAGESIZE), as described in Section 11.2.

(unallocated memory)

argv, environ

Uninitialized data (bss)

Initialized data

Text (program code)

0xC0000000

Stack
(grows downwards)

Heap
(grows upwards)

0x08048000

Program
break

Top of
stack

&etext

&edata

&end

Kernel
(mapped into process

virtual memory, but not
accessible to program)

/proc/kallsyms
provides addresses of
kernel symbols in this
region (/proc/ksyms in
kernel 2.4 and earlier)

Virtual memory address
(hexadecimal)

in
cr

ea
si

ng
 v

ir
tu

al
 a

dd
es

se
s

0x00000000

Creating a process

• A program can use this pid difference to do different things in the
parent and child

Program
Text

Creating a Process – fork()

Copyright ©: University of Illinois CS 241 Staff 12

Shared
Program

Text Data Copy-on-write
of Data

Parent

pid = fork() Child
In the child:
pid == 0;

In the
parent:
pid == the
process ID
of the child

A program can use this pid difference to do
different things in the parent and child

Fork()

• Only system call which returns two values.
pid_t pid = fork();
if (pid == 0) {
printf("hello from child\n"); }
else {
printf("hello from parent\n"); }

Fork()

printf("I'm printed once!\n");
fork();
printf("I'm printed twice!\n");

Fork issues

• Determining PIDs
• A parent can only determine the PID of the child through a fork(). A child can

always determine the PID through getppid() call.

• Which first?
• Implementation of fork is not standard across kernels.
• Child Vs parent scheduling

• Output of fork remains indeterminate
• Switching between parent and child depends on many factors

• Machine load, OS CPU scheduler
• Output interleaving is nondeterministic; Cannot determine output by looking at code

Fork

int main() {
fork()

fork()

fork()

return 0;
}

Chain and Fan

• Write code to make chain

• Write code to make fan
• Code to make N children of one parent process

Chain and Fan

• Write code to make chain
pid_t childpid;
for (i=1;i<n;i++)

if (childpid = fork()) // child keeps forking
break;

• Write code to make fan
• Code to make N children of one parent process
pid_t childpid;
for (i=1;i<n;i++)

if ((childpid = fork()) <= 0) // parent keeps forking
break;

fork and dup

• When fork() is called, all file descriptors are duplicated as if dup() is
called.

Child process inherits
parent’s open files

!  Parent forks after opening files foo.txt and readme.txt

Copyright ©: University of Illinois CS 241 Staff Copyright ©: University of Illinois CS 241 Staff

fd=0

fd=1

fd=2

fd=3

fd=4

Parent’s file desc. Table

stdin

stdout

stderr
file offset

 file object's
usage cnt = 2

…

List of open file obj.
(shared by all processes)

File “foo.txt”

file offset

 file object's
usage cnt = 2

…

file type

file size

of hard links

…

List of i-nodes
(shared by all processes)

File “readme.txt” fd=0

fd=1

fd=2

fd=3

fd=4

Child’s file desc. Table

stdin

stdout

stderr

file type

file size

of hard links

…

Example

#include <fcntl.h>

#include <stdio.h>

main() {

char s[1000];

int i, fd;

fd = open("file3", O_WRONLY | O_CREAT | O_TRUNC, 0644);

i = fork();

sprintf(s, "fork() = %d.\n", i);

write(fd, s, strlen(s));

close (fd);

}

Fork and memory

• Conceptually, fork() creates copies of the parent’s text, data, heap,
and stack segments.
• In practice, this is wasteful copying if the new child’s program text is

replaced
• The kernel employs a technique known as copy-on-write.
• After the fork(), the kernel traps any attempts by either the parent or the

child to modify one of these pages, and makes a duplicate copy of the about-
to-be-modified page.

Copy-on-write

Process Creat ion 521

the process’s data, heap, and stack segments. Most modern UNIX implementa-
tions, including Linux, use two techniques to avoid such wasteful copying:

z The kernel marks the text segment of each process as read-only, so that a pro-
cess can’t modify its own code. This means that the parent and child can share
the same text segment. The fork() system call creates a text segment for the
child by building a set of per-process page-table entries that refer to the same
virtual memory page frames already used by the parent.

z For the pages in the data, heap, and stack segments of the parent process, the
kernel employs a technique known as copy-on-write. (The implementation of
copy-on-write is described in [Bach, 1986] and [Bovet & Cesati, 2005].) Initially,
the kernel sets things up so that the page-table entries for these segments refer
to the same physical memory pages as the corresponding page-table entries in
the parent, and the pages themselves are marked read-only. After the fork(), the
kernel traps any attempts by either the parent or the child to modify one of
these pages, and makes a duplicate copy of the about-to-be-modified page. This
new page copy is assigned to the faulting process, and the corresponding page-
table entry for the child is adjusted appropriately. From this point on, the parent
and child can each modify their private copies of the page, without the changes
being visible to the other process. Figure 24-3 illustrates the copy-on-write
technique.

Figure 24-3: Page tables before and after modification of a shared copy-on-write page

Controlling a process’s memory footprint
We can combine the use of fork() and wait() to control the memory footprint of a
process. The process’s memory footprint is the range of virtual memory pages used
by the process, as affected by factors such as the adjustment of the stack as functions

Frame
2038

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Parent
page table

PT entry 211

Child
page table

PT entry 211

Frame
1998

Physical page
frames

Before modification After modification

Unused
page

frames

Process Creation/ Coordination

• fork()
• Create a child process
• Identical to parent EXCEPT for return value of fork() call
• Determines child/parent

• getpid() / getppid()

• Get process ID of the currently running process
• Get parent process ID

• exec() family
• Replace currently running process with a different image
• Process becomes something else losing previous code

• Focus on execvp()

• wait() / waitpid()
• Wait for any child to finish (wait)
• Wait for a specific child to finish (waitpid)
• Get return status of child

Load a new program into the child---
exec()

“fork()” and “exec()” combined

� Often after doing fork() we want to load a new
program into the child. E.g.: a shell

C1
PID:34

C1
PID:34

exec(ls)

Old Program New Program

P1
PID:28

C1
PID:34

fork()

Exec*

• e – An array of pointers to environment variables is explicitly passed
to the new process image.
• l – Command-line arguments are passed individually (a list) to the

function.
• p – Uses the PATH environment variable to find the file named in the

file argument to be executed.
• v – Command-line arguments are passed to the function as an array

(vector) of pointers.

execv(): Loading and running programs
• int execv(char *filename, char *argv[])

• Transforms the calling process into a new process
• Runs executable filename
• With argument list argv

• Does not return(unless error)
• Overwrites code, data, and stack

• keeps pid, open files and signal context
• Parameters:

• argv is a pointer to the argument list tobe made available to the new process
• To pass arguments and environment, use:

• int execve(char *filename, char *argv[], char *envp[])

Example

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
int main(int argc, char **argv) {
int fd;
fd = open(argv[1],O_RDWR|O_CREAT,S_IRWXU); //create an output file
dup2(fd, 1); //redirect output to file
close(fd); //free unused file descriptor
char* array[] = {"ls", "-la", NULL};
execv("/bin/ls", array);
printf("This string should not be printed!\n");
}

Process Creation/ Coordination

• fork()
• Create a child process
• Identical to parent EXCEPT for return value of fork() call
• Determines child/parent

• getpid() / getppid()

• Get process ID of the currently running process
• Get parent process ID

• exec() family
• Replace currently running process with a different image
• Process becomes something else losing previous code

• Focus on execvp()

• wait() / waitpid()
• Wait for any child to finish (wait)
• Wait for a specific child to finish (waitpid)
• Get return status of child

Waiting for a child to finish –
wait()
#include <sys/types.h>
#include <wait.h>
pid_t wait(int *status);
• Suspends/blocks calling process until child has finished
• Allow parent to be able to monitor the children to find out when and how they

terminate.
• Returns:

• Process ID of a terminated child on success
• -1 on error, sets errno

• Parameters:
• status: is a memory buffer set by wait in which termination status of child is populated, and

evaluated using specific macros defined for wait.

Example n.c

• Observe wait for each child by a parent
• child_wait.c
• child_status.c
• child_allstatus.c

Wait() limitations

• The wait() system call has a number of limitations:
• If a parent process has created multiple children, it is not possible to wait() for

the completion of a specific child; we can only wait for the next child that
terminates.
• If no child has yet terminated, wait() always blocks. Sometimes, it would be

preferable to perform a nonblocking wait so that if no child has yet
terminated, we obtain an immediate indication of this fact.

Waiting for specific child to finish—
waitpid()
#include <sys/types.h>
#include <sys/wait.h>
pid_t waitpid(pid_t pid, int *statloc, int options)
• Returns:

• process ID : if OK,
• 0 : if non-blocking option && no zombies around
• -1 : on error

• Parameters:
• Pid o child process
• statloc: status
• options

wait() Vs waitPID()

Wait() Waitpid()

wait blocks the caller until a child process terminates waitpid can be either blocking or non-
blocking:If options is 0, then it is blocking
If options is WNOHANG, then is it non-blocking

if more than one child is running then wait() returns
the first time one of the parent's offspring exits

waitpid is more flexible:
If pid == -1, it waits for any child process. In this
respect, waitpid is equivalent to wait
If pid > 0, it waits for the child whose process ID
equals pid
If pid == 0, it waits for any child whose process group
ID equals that of the calling process
If pid < -1, it waits for any child whose process group
ID equals that absolute value of pid

Example

• Observe waiting for a specific child
• Get status of the exited child
• Several children

Orphans and Zombies

• A parent may not outlive a child
• Who becomes the parent of an orphaned child?
• The orphaned child is adopted by init, the ancestor of all processes, whose

process ID is 1.
• A way to also determine if true parent is alive assuming child was created by a

non-init process

• What happens to a child that terminates before its parent has had a
chance to perform a wait()?
• The zombie

Zombies—corpses revived by witchcraft

• What happens on termination?
• When process terminates, still consumes system resources

• Entries in various tables & info maintained by OS
• Called a “zombie”
• Living corpse, half alive and half dead

Gathering information about Zombies

• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel discards process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then child will be reaped by

init process (pid == 1)
• So, only need explicit reaping in long-running processes n e.g., shells and

servers

Zombies Vs Orphans

• Zombie: has completed execution, still has an entry in the process
table as parent performs wait later.
• Orphan: parent has finished or terminated while the child process is

still running

Example k.c

• Observe Zombie

exit()

void exit(int status)
• Exits a process
• Normally return with status 0
atexit()
• Registers functions to be executed upon exit
void cleanup(void) {
printf("cleaning up\n"); }
int main() {
atexit(cleanup);
fork();
exit(0);
}

Process Termination

• Voluntary termination
• Normal exit

• return zero from main(), exit(0)
• Error exit

• exit(1)

• Involuntary termination
• Fatal error

• Divide by 0, core dump / seg fault
• Killed by another process

• kill procID, end task

When a process terminates

• When a child process terminates:
• Exit handlers are called in reverse order of registration
• Open files are flushed and closed
• Parent process is notified via signal SIGCHLD (more on this later)
• Exit status is available to parent via wait()
• Child’s resources are de-allocated

• File descriptors, memory, semaphores, file locks, …

