Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University
Visiting Faculty, CSE, IIT, Delhi

Docker Architecture

Docker *Client/Server architecture
Client

IP Socket * Uses IP sockets for communication
TCP port 2375 unencrypted

TCP port 2376 encrypted

*Clients can be on the same machine,
or communicate over a network

* Allows connections from multiple
concurrent clients!

Docker Server

Docker Archtiecture :

Provides API to clients
manages images, volumes,
and builds

Docker CLI

containers

e Starts new containers with runc
* Supervises and controls state of running
containers, i.e., tasks like starting,

/ stopping, pausing or destroying

/ * Shim becomes PID=1 in the container.

later), etc.

Containers belong to containerd

* runc reads container image specification
* Initializes container environment:
namespaces, cgroups, network (covered

* Creates persistent shim component
* Loads container programs and state
* runc exits when initialization is complete

Docker
Client

1 Provides API to clients

& Docker Daemon /

L .
containers

l Supervises and controls state of running

* containerd clones a new runc for every
container it creates

P % * Resource intensive to maintain a copy of

runc for each container
L2 shim process maintains minimal
environment to allow container to

code & code & code & maintain communication with containerd
state state state

* This modular architecture allows
Container Container Container containers to stay online even if the
Docker Server Daemon is restarted/upgraded!

‘:nntainerm

A traditional deployment worktlow

Development Team : Operations Team
N |
[Request Resources i >[Resources Provisioned]
I I
*]
4 N l
Script the Deployment : >[Tweak the Deployment]4—
\ : I
v :
e ™ | r_
Tweak the Deployment Loop N Times
Discover a Dependency >[Install Dependency

A 4

Application Is Deployed]

Dependency Hell

’/?‘/ (EASY_INSTALL) <— 7— $PYTHONPATH
L\
mr{ l\ ¥CﬁN\OTHER PIP??)
PYHON (27)) = \
SN el Y
(s 7))
FANEEY
Y

—_——

A
([T A

Just/local /Cellar ~/newenv/

~|_[/vsrlocal/lib/ python3.6
fusrflocal/opt > /usr/local/lib/ Python27

/(A BUNCH OF PATHS WITH “FRAMEWORKS" IN THEM SOMEWHERE)/

e’

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED
THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Docker approach

Development Team

[Build Image }
!

[Ship Image to Registry

v
[Deploy]

4)[Application Is Deployed]

Operations Team

N &

>[Provide Configuration Information
|

Sciunit

* Sciunits are efficient, lightweight, self-contained packages of
computational experiments that can be guaranteed to repeat or
reproduce regardless of deployment issues.

|dea: Audit + Copy + Redirect w/ PID isolation
= Automatic containerization

Application
program

execve(path,
argv, envp);

service routine

/ {

User Mode
glibc wrapper function
(sysdeps/unix/
sysv/linux/execve.c)

execve(path, argv, envp)

int 0x80 >
(arguments: __NR_execve,

path, argv, envp)

(arch/x86/kernel/entry 32.5)

| e -
[— return;
%)
J .
__________________________________ 4 S
)
g
———————————— Kernel Mode - - - --=-=-=-=-==—-—-— 3
System call Trap handler <
S
3
N

(arch/x86/kernel/
process 32.c)

return error;

-
[
|
|
|
|
[
|
[
| sys_execve()
|
[
|
[
|
[
|
|
[
|

{ T

_———/’__'ooo

system call: -

[call sys_call table
[NR execve]

\

IPOUL LISTL 0 Y2)UMS

ptrace

* The ptrace system call provides a means by which one process (the
“tracer”) may observe and control the execution of another process
(the “tracee”), and examine and change the tracee’s memory and
registers. It is primarily used to implement breakpoint debugging and
system call tracing

* Really, really, complicated syscall that can do a lot of things
* Basis for GDB

ptrace

* Iong ptrace(enum __ptrace_request request, ... other arguments),

* Request is a constant indicating what you want to do:
* PTRACE_TRACEME,
* PTRACE_PEEKUSER,
* PTRACE_SYSCAL

* Based on this constant other arguments might be required.

Starting to trace

parent child
(trace) Cwil house the program
\l, be'\nﬁ traced)

Lork() == ‘1
\l/ allow the parent to

Enable +rac'\n§
waiteid(peid, MULL, o), ptrace CTRACEME) control the chid's execution and

wait for chid fo selchatt \l, access its memora/reﬁ\smrs

Cie. to indicate that it has
enabled +rac\r\3 on itset)

raige(S\GSToP)
g

Se-halt: wait for the parent to
start the +rac'\n3 process

child has S?OPPQO\! ;é_r

waiteid returns
® \\/4

make the child continue until the
next sﬁscall. (The oS wil pause PJWéCQ(SYSCGLL)
e chid before the suscall \L

starts execu+'\nﬁ.)

(]
—) \.V child resumes execution

y Within the child process, start

waﬁf’l‘d((‘j\d' NULL, o), exechCP(‘oar'am fo frace running the program that we want

wait for chid § ! to trace
to make a ¢ .
syscall : :

* The child process calls ptrace(PTRACE_TRACEME) to inform the OS that its content is being
monitored by the parent process

ptrace

* ptrace(PTRACE_TRACEME) should be called in the child process, before starting to
execute the program we want to trace, to tell the kernel that it wants its parent process
to be able to observe its execution.

* When the tracing starts, the child process will be paused (as in SIGSTOP paused; it will not
continue until it receives SIGCONT).

* ptrace(PTRACE_SYSCALL, pid_t pid, O, 0) should be called in the parent process, which
will send SIGCONT to the child to wake it up,

 PTRACE_SYSCALL will pause the child right when it asks the kernel to do something, and right
when the kernel finishes running the syscall.

* i.e., will pause the child again as soon as it reaches a syscall boundary.

* ptrace(PTRACE_PEEKUSER, pid_t pid, REGISTER_NAME * sizeof(lonﬁ)) is called in the
parent process in order to read a register value from inside the child process.

» ptrace(PTRACE_PEEKDATA, pid_t pid, void *address to read) is called by the parent to
read a long (8 bytes) from address_to _read in the child’s virtual address space.

Stopping before and after the system call

parent child

(trace) ¢ (aropram be'\nﬁ
taced)

* Ptracing happens by ede‘k b

gﬁscall starts

wait or chid § do stuff without
to make a : SSSC&"S
F . h o I d Sﬂ&céll '
reezing cniid process, : i

E . . . syscal boundary ©oS
' write(4, Hello ', 6); pauses chid betore
1]
L}

chid has stopped! 3 /

extracting data,
restarting child process, and o1 e grcsess b

which ?scaﬂ S be'mﬂ
requeste

| params, etc \I[
L] L]
R e e at I n I t continue child process + svseh
to the next syscal ptraced Ll o) \
bour\dérﬁ

\

waﬁpgjsghgaﬁg waiteidCpid V
* The parent accumulates a series of CPU "

look at child erocess's
registers to gjure out ETrace(PEEKUSER, .0

snapshots as the tracee oscillates

continue chid erocess
to the next suscall

in and out of its system calls. o

wait for child to
pause aqain at the
next 535@"

pirace (PEEKUSER, w)

weo="

) oo,

|

,o
ol
3
e}
®
3
& &
0
D
=
6 Beecese=e S tcccccccaccs

waitpid(pid, MULL, o)

\’

write) sgscall executes

syscal bouno\artj oS
pduses chid just
after 53scall returns

write) has Qr\allﬁ Snished!

do more stukf without
sgscalls

Stopping before and after the system call

* The kernel will pause the child just as it’s about to make a syscall, and it will wake
up the parent. The parent uses PTRACE_PEEKUSER and PTRACE_PEEKDATA to
look at the child process’s registers and memory, figuring out which system call is
being executed and what arguments were provided.

* The parent uses PTRACE_SYSCALL aFain to run the child until the next syscall
boundary (which is when the syscall is returning).

* The kernel will pause the child again just as it’s returning from the syscall, and it
will wake up the parent. The parent
uses PTRACE_PEEKUSER and PTRACE_PEEKDATA again to get the return value of
the syscall, and to read errno from the child’s memory if the syscall returned -1.

* The parent calls PTRACE_SYSCALL to wake up the child again, and waits for the
child to make its next syscall.

* Uses ptrace to monitor system calls

* execve, sys_fork
* read, write, sys_io
* bind, connect, socket

e Col
e Col
* Ma

ects provenance

ects runtime information

kes package

AUTHOR’s COMPUTER

[bin/workflow

_ Start workflow and Audit PTU

fork()

1
[
[
v

fork()

[bin/

reclass
|

read(conf.dat)

[data/
conf.dat

[bin/

calculate

ptu-audit ptu-exec

Copy Application %

Events

PTU Package

/$PKG_ROOT/
bin/
workflow

reclass

calculate
data/

conf.dat /

Copy

PTU Package

=

Provenance DB

J/data/
conf.dat

/bin/
filter

fork() o

/bin/

calculate

fork()
/bin/

convert

T fork()

~

I
I
U

/ $PKG_ROOT/

bin/
workflow
reclass
calculate
filter
convert
python

data/
conf.dat
in.dat
out.dat

>

_/

Redirect with PID isolation

PTU Verify, Start calculate and Redirect

TESTER’s COMPUTER

ptu-exec

ptu-audit

TRead Graph

/ PTU Package

/$PKG_ROOT/
bin/
calculate
filter
data/
in.dat
out.dat

read($PK

”
-
”
-

CDE read()

(G_ROOT/datal/in.dat)
>

h 4

SPKG_ROOT/bin/
calculate

¥

/data/
conf.dat

/data/
in.dat

<€

J

SPKG_ROOT/bin/
filter

write($PKG_ROOT/data/out.dat)

J/data/
out.dat

Define syscalls to trace, fork child, and
register trace

#detine SYSCALL_1ST "trace=open,execve,stat,stat64,lstat,lstaté4,olds
',rename,access,creat,chmod,chown,chown32,lchown,lchown32,readlink,utime, truncate,truncate64” \
',chdir,fchdir,mkdir,rmdir,getcwd,mknod,bind,utimes,openat” \
',faccessat,fstatat64,fchownat,fchmodat,futimesat,mknodat,linkat,symlinkat,renameat,readlinkat” \
',mkdirat,unlinkat,setxattr,lsetxattr,getxattr,lgetxattr,listxattr,llistxattr,removexattr,lremovexattr” \
',connect,accept,listen,close” \

',exit_group”

strace _child = pid

if (!daemonized tracer) {
if (ptrace(PTRACE_TRACEME, ©0, (char *) 1, 0) < 0) {
perror(”"strace: ptrace(PTRACE TRACEME, ...)"):;
exit(1);

execvp(pathname, argv):;

Sciunit executes syscall specific
functions dependent upon syscall

Function
Handte Tabte
Execute function to

handle Sciunit related
trace

Intercepts Sys_open >
open --

syscall #2

Strace mods -- Use syscall # to look up
function handle to execute

int
trace syscall(struct tcb *tcp)
{
return exiting(tcp) ?
trace syscall exiting(tcp) : trace syscall entering(tcp);

if (tcp->scno >= nsyscalls || tcp->scno < 0 ||
I ((qual _flags[tcp->scno] & QUAL _RAW) && tcp->scno != SYS exit)) {

/] empty
}
else {
// pgbovine - this function pointer refers to functic
// sys_open() or sys execve(), which we modify for CD
// to track dependencies rather than simply printing
sys res = (*sysent[tcp->scno].sys func)(tcp);

}

Each traced syscall has its own handler
function

int sys open (struct tcb* tcp) {
// modified by pgbovine
if (entering(tcp)) {
CDE_begin_standard fileop(tcp, "sys open");
} else {
print_open prov(tcp, "sys open”);

}

return 0;
}
int
sys_execve(struct tcb *tcp)

{
// modified by pgbovine to track dependencies rather
if (entering(tcp)) {

CDE_begin_execve(tcp);
}
else {

CDE_end _execve(tcp);

}

Sys _open —
begin standard fileop()

if (Cde_exec _mode) {
if (filename) {
modify syscall single arg(tcp, 1, filename);
}
}

else {
if (filename) {

pre-emptively copy the given file into cde-root/,
NOTe T L LlL can sometimes be a JUNKY STRING due
// conditions when strace is tracing complex multi-process
copy_file into cde root(filename, tcp->current dir);

Sciunit

* sciunit-exec
* Build a package of authors’ source code, data, and environment variables
* Record process- and file-level details about a reference execution

* sciunit-repeat
* In own PID namespace
* Re-execute specified part of the provenance graph

Sclunit containers

. All needed files (including binaries) are stored in the container during
capture

. During repeat the containerized files and binaries are referenced
. Containers can be distributed to others

. The exact versions of each file referenced in the original are
maintained regardless of changes in environment.

Storage

e content-based deduplication

Meta data

Container |

Sl

Container N

. Hash ID

D1

ID2

ID3

D1

ID2

D1

ID5S

ID3

ID6

Container |

Database

v

e 4 Block 1
> Block 2
> Block 3
R T e g I
»>! Block 4 !
| S A | ’\
\\ Redundant
Container N
o (_"1 f"_w_r ___________ , blocks
]
> Block N1 '
1
]
> Block N2 :
Uy 4
> Block N3 j
1)
~ Block N4 :
—_— | 1
>

vy Vv

—/

A

Hash table

Sciu

Ma
Ma
Ma
Ma
Ma

NIt uses

e it easier for user to preserve a computational experiment
ke it easier for user to share a computational environment
ke it easier for user to repeat a published experiment

e it easier for user to extend or modify a published experiment

ke it easier for user to understand how a result is produced

Sciunit

* https://sciunit.run/

e https://github.com/depaul-dice/sciunit

https://sciunit.run/
https://github.com/depaul-dice/sciunit

