
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

Docker Architecture

Docker
Client

Docker Server

IP Socket
TCP port 2375 unencrypted
TCP port 2376 encrypted

Docker
Client

•Client/Server architecture

•Uses IP sockets for communication

•Clients can be on the same machine,
or communicate over a network

•Allows connections from multiple
concurrent clients!

Docker Archtiecture

• Starts new containers with runc
• Supervises and controls state of running

containers, i.e., tasks like starting,
stopping, pausing or destroying
containers

• runc reads container image specification
• Initializes container environment:

namespaces, cgroups, network (covered
later), etc.
• Creates persistent shim component
• Loads container programs and state
• runc exits when initialization is complete

• Provides API to clients
• manages images, volumes,

and builds

Containers belong to containerd

• Shim becomes PID=1 in the container.

Docker
Client

Docker Server

Docker Daemon

shim
code &
state

Container

shim
code &
state

Container

shim
code &
state

Container

Provides API to clients

• containerd clones a new runc for every
container it creates
• Resource intensive to maintain a copy of
runc for each container
• shim process maintains minimal

environment to allow container to
maintain communication with containerd
• This modular architecture allows

containers to stay online even if the
Daemon is restarted/upgraded!

Supervises and controls state of running
containers

A traditional deployment workflow

Dependency Hell

Docker approach

Figure 2-2. A Docker deployment workflow

This is possible because Docker allows all of the dependency issues to be
discovered during the development and test cycles. By the time the application is
ready for first deployment, that work is done. And it usually doesn’t require as
many handovers between the development and operations teams. That’s a lot
simpler and saves a lot of time. Better yet, it leads to more robust software
through testing of the deployment environment before release.

Sciunit

• Sciunits are efficient, lightweight, self-contained packages of
computational experiments that can be guaranteed to repeat or
reproduce regardless of deployment issues.

Idea: Audit + Copy + Redirect w/ PID isolation
= Automatic containerization

46 Chapter 3

Figure 3-1: Steps in the execution of a system call

Appendix A describes the strace command, which can be used to trace the system
calls made by a program, either for debugging purposes or simply to investigate
what a program is doing.

More information about the Linux system call mechanism can be found in
[Love, 2010], [Bovet & Cesati, 2005], and [Maxwell, 1999].

3.2 Library Functions
A library function is simply one of the multitude of functions that constitutes the
standard C library. (For brevity, when talking about a specific function in the rest of
the book we’ll often just write function rather than library function.) The purposes of
these functions are very diverse, including such tasks as opening a file, converting a
time to a human-readable format, and comparing two character strings.

Many library functions don’t make any use of system calls (e.g., the string-
manipulation functions). On the other hand, some library functions are layered on
top of system calls. For example, the fopen() library function uses the open() system
call to actually open a file. Often, library functions are designed to provide a more
caller-friendly interface than the underlying system call. For example, the printf()
function provides output formatting and data buffering, whereas the write() system

Trap handlerSystem call
service routine

sw
itch to kernel m

ode

...
execve(path,
 argv, envp);
...

Application
program

execve(path, argv, envp)
{
 ...
 int 0x80
 (arguments: __NR_execve,
 path, argv, envp)
 ...
 return;
}

glibc wrapper function
(sysdeps/unix/

 sysv/linux/execve.c)

system_call:

 ...

 call sys_call_table
 [__NR_execve]
 ...

(arch/x86/kernel/entry_32.S)

sys_execve()
{

 ...

 return error;
}

(arch/x86/kernel/
process_32.c)

sw
itch to user m

ode

User Mode

Kernel Mode

ptrace

• The ptrace system call provides a means by which one process (the
“tracer”) may observe and control the execution of another process
(the “tracee”), and examine and change the tracee’s memory and
registers. It is primarily used to implement breakpoint debugging and
system call tracing
• Really, really, complicated syscall that can do a lot of things
• Basis for GDB

ptrace

• long ptrace(enum __ptrace_request request, ... other arguments ...);

• Request is a constant indicating what you want to do:
• PTRACE_TRACEME,
• PTRACE_PEEKUSER,
• PTRACE_SYSCAL

• Based on this constant other arguments might be required.

Starting to trace

• The child process calls ptrace(PTRACE_TRACEME) to inform the OS that its content is being
monitored by the parent process

ptrace

• ptrace(PTRACE_TRACEME) should be called in the child process, before starting to
execute the program we want to trace, to tell the kernel that it wants its parent process
to be able to observe its execution.
• When the tracing starts, the child process will be paused (as in SIGSTOP paused; it will not

continue until it receives SIGCONT).

• ptrace(PTRACE_SYSCALL, pid_t pid, 0, 0) should be called in the parent process, which
will send SIGCONT to the child to wake it up,
• PTRACE_SYSCALL will pause the child right when it asks the kernel to do something, and right

when the kernel finishes running the syscall.
• i.e., will pause the child again as soon as it reaches a syscall boundary.

• ptrace(PTRACE_PEEKUSER, pid_t pid, REGISTER_NAME * sizeof(long)) is called in the
parent process in order to read a register value from inside the child process.

• ptrace(PTRACE_PEEKDATA, pid_t pid, void *address_to_read) is called by the parent to
read a long (8 bytes) from address_to_read in the child’s virtual address space.

Stopping before and after the system call

• Ptracing happens by
Freezing child process,
extracting data,
restarting child process, and
Repeating it

• The parent accumulates a series of CPU
snapshots as the tracee oscillates
in and out of its system calls.

Stopping before and after the system call

• The kernel will pause the child just as it’s about to make a syscall, and it will wake
up the parent. The parent uses PTRACE_PEEKUSER and PTRACE_PEEKDATA to
look at the child process’s registers and memory, figuring out which system call is
being executed and what arguments were provided.
• The parent uses PTRACE_SYSCALL again to run the child until the next syscall

boundary (which is when the syscall is returning).
• The kernel will pause the child again just as it’s returning from the syscall, and it

will wake up the parent. The parent
uses PTRACE_PEEKUSER and PTRACE_PEEKDATA again to get the return value of
the syscall, and to read errno from the child’s memory if the syscall returned -1.
• The parent calls PTRACE_SYSCALL to wake up the child again, and waits for the

child to make its next syscall.
•

• Uses ptrace to monitor system calls
• execve, sys_fork
• read, write, sys_io
• bind, connect, socket

• Collects provenance
• Collects runtime information
• Makes package

Copy

Redirect with PID isolation

Define syscalls to trace, fork child, and
register trace

Sciunit executes syscall specific
functions dependent upon syscall

Function
Handle Table

sys_open
trace
intercepts
open --
syscall #2

Execute function to
handle Sciunit related
open tasks

Strace mods -- Use syscall # to look up
function handle to execute

Each traced syscall has its own handler
function

sys_open –
begin_standard_fileop()

Sciunit

• sciunit-exec
• Build a package of authors’ source code, data, and environment variables
• Record process- and file-level details about a reference execution

• sciunit-repeat
• In own PID namespace
• Re-execute specified part of the provenance graph

Sciunit containers

• All needed files (including binaries) are stored in the container during
capture

• During repeat the containerized files and binaries are referenced
• Containers can be distributed to others
• The exact versions of each file referenced in the original are

maintained regardless of changes in environment.

Storage

• content-based deduplication

Sciunit uses

• Make it easier for user to preserve a computational experiment
• Make it easier for user to share a computational environment
• Make it easier for user to repeat a published experiment
• Make it easier for user to extend or modify a published experiment
• Make it easier for user to understand how a result is produced

Sciunit

• https://sciunit.run/
• https://github.com/depaul-dice/sciunit

https://sciunit.run/
https://github.com/depaul-dice/sciunit

