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Resource Virtualization with Containers

e Resource
* Virtual-ization
e Containers

Process of virtualization in which we establish views on cpus, disks, network



Why is this course important?

* App
* App
* App
* App
* App

ications in cloud computing
ications in software engineering
ications in systems and security
ications in reproducibility
ications in data storage

It is a multi-billion dollar industry



Course Objectives

* Understand and explore system concepts necessary to understand
containers

* Develop and establish different types of bare bones containers

* Explore containers in the commercial and research world




Virtualization Vs Abstraction
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Well-defined abstraction interfaces
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APl Vs ABI Vs ISA

* APl is used by high-level language (HLL) programmers to invoke some
library or OS features.

* An APl enables compliant applications to be ported easily (via recompilation) to any
system that supports the same API.
* The ABI is a compiled version of the API.

* Itis at the machine language level. With ABI, system functionalities are accessed
through OS system calls.

* A source code compiled to a specific ABI can run unchanged only on a system with
the same OS and ISA.

* |SA defines a set of storage resources (e.g., registers and memory) and a
set of instructions that allows manipulating data held at storage resources.

* |SA lies at the boundary between hardware and software.



Abstraction

* Abstraction means hide the details of the layer below and only
expose a logical view.

e Quiz?



Abstraction

* Abstraction means hide the details of the layer below and only
expose a logical view.

* Quiz: Have you as a programmer ever used the concept of abstraction
for any other part of the computer system?



Abstraction
* The details of a hard disk are abstracted by the OS

* Disk storage appears to applications as a set of variable-size files.

* Disk storage is locations and sizes of cylinders, sectors, and tracks or
bandwidth allocations at disk controllers.

* Programmers are not aware of it. They can simply create, read, and write files
without knowledge of the way the hard disk is constructed or organized.

File File

Abstraction ™\ / P

(a)



What is the disadvantage of abstraction via
interfaces?



INC

| this socket enable access to electricity in
ja?




Will this socket enable access to electricity in
the US?

Best Modular Switch Brands




Solution? Adaptor

* Any problems with this solution?



Virtualization

* Virtualization does not necessarily aim to simplify or hide details.



Virtualization

Virtualization \\ ,
\

(b)

File

File

* Example

e An Intel CPU with Linux installed
and a AMD CPU with Linux
installed on it.

* Compile source code into machine
code in each machine but cannot
take the machine code from one

machine and simply run on another
machine.



Virtualization Isomorphism

e Construction of an isomorphism that maps a virtual guest
resource/system to a real host system/resource
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Hypervisor is an implementation of this

iIsomorphism

A full set of hardware resources, including processors, memory, and

/0O devices will be virtualized to provide the VM.
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Process Virtual Machine
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Host OS is integral
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Containers: Virtualize OS behavior
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What is OS behavior?



Operating System

* Definition 1: A package consisting of the central software for
managing a computer’s resources and all of the accompanying
standard software tools, such as command-line interpreters, graphical
user interfaces, file utilities, and editors.

e Definition 2: The central software that manages and allocates
computer resources (i.e., the CPU, RAM, and devices).

* We often use the term kernel is often as a synonym for the second meaning.




The Linux Kernel

* Textbook: The Linux Programming Interface

e https://github.com/oliverralbertini/the-linux-programming-interface

* Introduction to the ubuntu machine

* Man pages


https://github.com/oliverralbertini/the-linux-programming-interface

3 facts about the kernel

1. Kernel means access to resources
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3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

inti=0;
i=i+1;
printf("Hello World");

* At some point of the program kernel became the owner of this process to print this for you.
* Kernel never relinquishes control over resources.



3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

3. Kernel is not a process but the process manager.
* init
* pstree



System Calls

* A system call is a common, controlled entry point into the kernel,
allowing a process to request that the kernel perform some action on
the process’s behallf.

* By common we imply all processes use this method.

* By controlled we imply that sharing has to be done safely.

» Examples of system calls: creating a new process, performing 1/0, and
creating a pipe for interprocess communication.



3 facts about system calls

1. A system call changes **the process state** from user mode to kernel mode,
so that the CPU can access protected kernel memory.

2. System calls are akin to calling C functions except these functions perform
some standard steps

* Each system call may have a set of arguments that specify information to be transferred from
user space (i.e., the process’s virtual address space) to kernel space and vice versa.

3. Set of system calls is fixed. Each system call is identified by a unique number.
* Note: there are a total of 329 calls. See here for a listing
* http://blog.rchapman.org/posts/Linux_System_Call Table for x86_64/
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Demo

e #include <fcntl.h>
int main() {
int fd = open("HelloWorld.txt", 0); }

* S strace ./openHelloWorld™™

S gdb openHelloWorld

. " b openHelloWorld.c:4™
° AVA VY r-\\\
° \\S

. ““disassemble



Overview of System Calls

* |/O system calls

* Process lifecycle system calls
* Networking system calls

* |IPC system calls

* Security system calls



Examples of System Calls

 getuid() //get the user ID
 read() // read a buffer worth of data
» execve() //execute a program

* Don’t mix system calls with standard library functions
* |s printf() a system call?
* Is rand() a system call?



System calls in a program

* Some library functions have embedded system calls. For instance, the
library routines scanf and printf make use of the system calls read
and write.
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System Calls Vs Library Routines

e System calls look very much like a library routine
* How do we know what is and what isn’t a system call?

* All you have to remember which is which

e 2:System Call
e 3: Library Call

* Read documentation about system calls:
* % man read
e http://man7.org/linux/man-pages/man2/read.2.html

* Read documentation about library functions:
* % man fread
e http://man7.org/linux/man-pages/man3/fread.3.html



http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man3/fread.3.html

Unix: Everything is a file

* Files are central to the UNIX philosophy.

* In the most basic form, a UNIX file is a sequence of bytes
 BO,B1,....,.Bk,.....Bm-1

 All 1/0O devices (e.g.,network,disks, terminals) are modeled as files
* Asimple and elegant low-level interface

* For example:
. /dev/sda // Hard disk
« /dev/tty // terminal for the current process
» /proc/cpuinfo CPU as deduced by the kernel



File descriptiors: Kernel identification of a file

* All system calls for performing |/O refer to open files using a file
descriptor, a (usually small) nonnegative integer.

* FDs refer to open files, where file is
* Pipe
* FIFOs
* Sockets
* Terminals
* Regular files
* Processe control block

Table 4-1: Standard file descriptors

e Standard file descriptors e deserpior TPorpose— TFOST mame [ ivam

standard input | STDIN_FILENO | stdin

1 standard output | STDOUT_FILENO | stdout
2 standard error | STDERR_FILENO | siderr




Unix 1/0

 fd = open(file, how, ...) // open a file for reading, writing or both

* s = close(fd) // close an open file

* n = read(fd, buffer, nbytes) //read data from a file into a buffer

* n = write(fd, buffer, nbytes) //write data from a buffer into a file

* position = Iseek(fd, offset, whence) //move the file pointer

 fd = creat(file,how)

* s = stat(hame, &buf) // get a file’s status information from filesystem
* link( ), unlink() // aliasing and removing files



Kernel View of Files

* |t seems there is a one-to-one correspondence between a file
descriptor and an open file. In practice not true.

* Multiple descriptors referring to the same open file.

* These file descriptors may be open in the same process or in different
processes.

* These may have different file status flags, and may even have different offsets
within the file.



Kernel Data structure

* 3 important data structures kernel maintains for open files
* the per-process file descriptor table;
* the system-wide table of open file descriptions; and
* the file system i-node table. N open e e N

File descriptor table (system-wide) (system-wide)
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Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes
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Open file table

e System-wide table, one entry for each open file on system:
* File offset

* File access mode (R /W / R-W, from open())

* File status flags (from open())

e Signal-driven 1/O settings

* Reference to i-node object for file
struct file in include/linux/fs.h

* Following terms are commonly treated as synonymes:
* open file description (OFD) (POSIX)
» open file table entry or open file handle
e (These two are ambiguous; POSIX terminology is preferable)
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l-node Table

e System-wide table drawn from file i-node information in filesystem:
* File type (regular file, FIFO, socket, . . .)

* File permissions

e Other file properties (size, timestamps, . . .)

o struct inode in include/linux/fs.h



Why does it matter?

* Two different FDs referring to same OFD share file offset
* (File offset == location for next read()/write())
* Changes (read(), write(), Iseek()) via one FD visible via other FD
* Applies to both intraprocess & interprocess sharing of OFD

 Similar scope rules for status flags (O _APPEND, O _SYNGC, .. .)
* Changes via one FD are visible via other FD

* Conversely, changes to FD flags (held in FD table) are private
to each process and FD



File: dup

#include <unistd.h>
int dup(int oldfd)

* Takes oldfd, an open file descriptor, and returns a new descriptor that
refers to the same open file description.

* The new descriptor is guaranteed to be the lowest unused file
descriptor.

* Returns
(new) file descriptor on success, or —1 on error

* newfd = dup(1);



Example

main() {

int f£d1, £d2;
fdl = open("filel", O WRONLY | O CREAT | O TRUNC, 0644);

fd2 = open("filel", O WRONLY);



Example

main() {
int fdl, £d2;

fdl
fd2

open("filel", O WRONLY | O CREAT | O TRUNC, 0644);
open("filel"”, O WRONLY) ;

write(fdl, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(£fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fdl);
close(£fd2);



Example

#include <fcntl.h>
#include <stdio.h>

main() {

int fd1l, £d4d2;

fdl = open("file2", O WRONLY | O CREAT | O TRUNC, 0644);

fd2

dup(£fdl);

write(fdl, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(£fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fdl);
close(£fd2);



