
Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University

Visiting Faculty, CSE, IIT, Delhi

⍳
! Ҽ

COV882

• Course website: https://dice.cs.depaul.edu/courses/882/index.html
• Course mailing list: 2201-cov882@courses.iitd.ac.in
• Team: 2201-COV882 SPECIAL MODULE IN SOFTWARE SY.
• Baadal for HW (request VM)
• Ubuntu 20.04 1 CPU 2GM memory 80 GB HDD

• Discord for discussions: https://discord.gg/sydFh5rq
• Moodle for submissions
• Send email: tmalik@cse.iitd.ac.in or tanu.malik@depaul.edu

https://dice.cs.depaul.edu/courses/882/index.html
mailto:2201-cov882@courses.iitd.ac.in
mailto:tmalik@cse.iitd.ac.in

Resource Virtualization with Containers

• Resource
• Virtual-ization
• Containers

Process of virtualization in which we establish views on cpus, disks, network

Why is this course important?

• Applications in cloud computing
• Applications in software engineering
• Applications in systems and security
• Applications in reproducibility
• Applications in data storage

It is a multi-billion dollar industry

Course Objectives

• Understand and explore system concepts necessary to understand
containers
• Develop and establish different types of bare bones containers
• Explore containers in the commercial and research world

Virtualization Vs Abstraction

CPU

A Computer System

I/O devices
and

networking

Main
memory

Memory
translation

?

Hardware

Software

A Computer System

I/O devices
and

networking

Main
memory

System interconnect (bus)

Memory
translation

CPU

OS

Libraries

Apps

Hardware

Software

Well-defined abstraction interfaces

I/O devices
and

networking

Main
memory

System interconnect (bus)

Memory
translation

CPU

OS

Libraries

Apps

Hardware

Software

ISA

ABI

API

API Vs ABI Vs ISA
• API is used by high-level language (HLL) programmers to invoke some

library or OS features.
• An API enables compliant applications to be ported easily (via recompilation) to any

system that supports the same API.
• The ABI is a compiled version of the API.

• It is at the machine language level. With ABI, system functionalities are accessed
through OS system calls.

• A source code compiled to a specific ABI can run unchanged only on a system with
the same OS and ISA.

• ISA defines a set of storage resources (e.g., registers and memory) and a
set of instructions that allows manipulating data held at storage resources.
• ISA lies at the boundary between hardware and software.

Abstraction

• Abstraction means hide the details of the layer below and only
expose a logical view.

• Quiz?

Abstraction

• Abstraction means hide the details of the layer below and only
expose a logical view.

• Quiz: Have you as a programmer ever used the concept of abstraction
for any other part of the computer system?

Abstraction
• The details of a hard disk are abstracted by the OS
• Disk storage appears to applications as a set of variable-size files.

• Disk storage is locations and sizes of cylinders, sectors, and tracks or
bandwidth allocations at disk controllers.
• Programmers are not aware of it. They can simply create, read, and write files

without knowledge of the way the hard disk is constructed or organized.
appears to have its own tracks and sectors.
Virtualizing software uses the file abstraction as an
intermediate step to provide a mapping between
the virtual and real disks. A write to a virtual disk
is converted to a file write (and therefore to a real
disk write). Note that the level of detail provided at
the virtual disk interface—the sector/track address-
ing—is no different from that for a real disk; no
abstraction takes place.

VIRTUAL MACHINES
The concept of virtualization can be applied not

only to subsystems such as disks but to an entire
machine. To implement a virtual machine, devel-
opers add a software layer to a real machine to sup-
port the desired architecture. By doing so, a VM
can circumvent real machine compatibility and
hardware resource constraints.

Architected interfaces
A discussion of VMs is also a discussion about

computer architecture in the pure sense of the term.
Because VM implementations lie at architected
interfaces, a major consideration in the construc-
tion of a VM is the fidelity with which it imple-
ments these interfaces.

Architecture, as applied to computer systems,
refers to a formal specification of an interface in the
system, including the logical behavior of resources
managed via the interface. Implementation
describes the actual embodiment of an architecture.
Abstraction levels correspond to implementation
layers, whether in hardware or software, each asso-
ciated with its own interface or architecture.

Figure 2 shows some important interfaces and
implementation layers in a typical computer sys-
tem. Three of these interfaces at or near the
HW/SW boundary—the instruction set architec-
ture, the application binary interface, and the appli-
cation programming interface—are especially
important for VM construction.

Instruction set architecture. The ISA marks the
division between hardware and software, and con-
sists of interfaces 3 and 4 in Figure 2. Interface 4
represents the user ISA and includes those aspects
visible to an application program. Interface 3, the
system ISA, is a superset of the user ISA and
includes those aspects visible only to operating sys-
tem software responsible for managing hardware
resources.

Application binary interface. The ABI gives a pro-
gram access to the hardware resources and services
available in a system through the user ISA (inter-
face 4) and the system call interface (interface 2).

The ABI does not include system instructions;
rather, all application programs interact with the
hardware resources indirectly by invoking the
operating system’s services via the system call inter-
face. System calls provide a way for an operating
system to perform operations on behalf of a user
program after validating their authenticity and
safety.

Application programming interface. The API gives a
program access to the hardware resources and ser-
vices available in a system through the user ISA
(interface 4) supplemented with high-level language

May 2005 33

(b)(a)

File File

File File

Abstraction Virtualization

Figure 1. Abstraction and virtualization applied to disk storage. (a) Abstraction
provides a simplified interface to underlying resources. (b) Virtualization provides
a different interface or different resources at the same abstraction level.

Hardware

Software

Memory
translation

API

ABI
ISA

Main
memory

I/O devices
and

networking

Application
programs

Libraries

Operating system

Execution hardware

System interconnect
(bus)

1

2

3 4

Figure 2. Computer system architecture. Key implementation layers communicate
vertically via the instruction set architecture (ISA), application binary interface
(ABI), and application programming interface (API).

What is the disadvantage of abstraction via
interfaces?

Will this socket enable access to electricity in
India?

Will this socket enable access to electricity in
the US?

Solution? Adaptor

• Any problems with this solution?

Virtualization

• Virtualization does not necessarily aim to simplify or hide details.

Virtualization

• Example

• An Intel CPU with Linux installed
and a AMD CPU with Linux
installed on it.
• Compile source code into machine

code in each machine but cannot
take the machine code from one
machine and simply run on another
machine.

appears to have its own tracks and sectors.
Virtualizing software uses the file abstraction as an
intermediate step to provide a mapping between
the virtual and real disks. A write to a virtual disk
is converted to a file write (and therefore to a real
disk write). Note that the level of detail provided at
the virtual disk interface—the sector/track address-
ing—is no different from that for a real disk; no
abstraction takes place.

VIRTUAL MACHINES
The concept of virtualization can be applied not

only to subsystems such as disks but to an entire
machine. To implement a virtual machine, devel-
opers add a software layer to a real machine to sup-
port the desired architecture. By doing so, a VM
can circumvent real machine compatibility and
hardware resource constraints.

Architected interfaces
A discussion of VMs is also a discussion about

computer architecture in the pure sense of the term.
Because VM implementations lie at architected
interfaces, a major consideration in the construc-
tion of a VM is the fidelity with which it imple-
ments these interfaces.

Architecture, as applied to computer systems,
refers to a formal specification of an interface in the
system, including the logical behavior of resources
managed via the interface. Implementation
describes the actual embodiment of an architecture.
Abstraction levels correspond to implementation
layers, whether in hardware or software, each asso-
ciated with its own interface or architecture.

Figure 2 shows some important interfaces and
implementation layers in a typical computer sys-
tem. Three of these interfaces at or near the
HW/SW boundary—the instruction set architec-
ture, the application binary interface, and the appli-
cation programming interface—are especially
important for VM construction.

Instruction set architecture. The ISA marks the
division between hardware and software, and con-
sists of interfaces 3 and 4 in Figure 2. Interface 4
represents the user ISA and includes those aspects
visible to an application program. Interface 3, the
system ISA, is a superset of the user ISA and
includes those aspects visible only to operating sys-
tem software responsible for managing hardware
resources.

Application binary interface. The ABI gives a pro-
gram access to the hardware resources and services
available in a system through the user ISA (inter-
face 4) and the system call interface (interface 2).

The ABI does not include system instructions;
rather, all application programs interact with the
hardware resources indirectly by invoking the
operating system’s services via the system call inter-
face. System calls provide a way for an operating
system to perform operations on behalf of a user
program after validating their authenticity and
safety.

Application programming interface. The API gives a
program access to the hardware resources and ser-
vices available in a system through the user ISA
(interface 4) supplemented with high-level language

May 2005 33

(b)(a)

File File

File File

Abstraction Virtualization

Figure 1. Abstraction and virtualization applied to disk storage. (a) Abstraction
provides a simplified interface to underlying resources. (b) Virtualization provides
a different interface or different resources at the same abstraction level.

Hardware

Software

Memory
translation

API

ABI
ISA

Main
memory

I/O devices
and

networking

Application
programs

Libraries

Operating system

Execution hardware

System interconnect
(bus)

1

2

3 4

Figure 2. Computer system architecture. Key implementation layers communicate
vertically via the instruction set architecture (ISA), application binary interface
(ABI), and application programming interface (API).

Virtualization Isomorphism

• Construction of an isomorphism that maps a virtual guest
resource/system to a real host system/resource

1.4. WHAT IS VIRTUALIZATION? 9

Guest

Si Sj

Host

Si’ Sj’

e(Si)

e’(Si’)

V(Si) V(Sj)

Figure 1.6: Virtualization Isomorphism.

To this end, we note that abstractions could be applied at the hardware or software levels. At

the hardware level, components are physical (e.g., CPU and RAM). Conversely, at the software

level, components are logical (e.g., RMI and RPC). In this chapter we are most concerned with

abstractions at the software or near the hardware/software levels.

1.3.2 Well-Defined Interfaces
A system (or subsystem) interface is defined as a set of function calls that allows leveraging the

underlying systems functionalities without needing to know any of its details. The two most pop-

ular interfaces in systems are the Application Programming Interface (API) and the Instruction

Set Architecture (ISA) interface. Another interface that is less popular, yet very important (es-

pecially in virtualization), is the Application Binary Interface (ABI). API is used by high-level

language (HLL) programmers to invoke some library or OS features. An API includes data types,

data structures, functions, and object classes, to mention a few. An API enables compliant ap-

plications to be ported easily (via recompilation) to any system that supports the same API. As

the API deals with software source codes, the ABI is a binary interface. The ABI is essentially

a compiled version of the API. Hence, it lies at the machine language level. With ABI, system

functionalities are accessed through OS system calls. OS system calls provide a specific set of

operations that the OS can perform on behalf of user programs. A source code compiled to a spe-

cific ABI can run unchanged only on a system with the same OS and ISA. Finally, ISA defines a

set of storage resources (e.g., registers and memory) and a set of instructions that allows manip-

ulating data held at storage resources. ISA lies at the boundary between hardware and software.

As discussed later in the chapter, ABI and ISA are important in defining virtual machine types.

1.4 What is Virtualization?
Formally, virtualization involves the construction of an isomorphism that maps a virtual guest

system to a real host system [48]. Fig. 1.6 illustrates the virtualization process. The function V
in the figure maps guest state to host state. For a sequence of operations, e, that modifies a guest

Hypervisor is an implementation of this
isomorphism
• A full set of hardware resources, including processors, memory, and

I/O devices will be virtualized to provide the VM.
1.5. VIRTUAL MACHINE TYPES 11

Hypervisor

Virtual Processors
Virtual Memory
Virtual I/O
Virtual Storage

VM 1

Physical Processors
Physical Memory
Physical I/O
Physical Storage

Resource
Mapping

Guest OS 1

App 1 App 2 App 1 App 3

Host 1

Guest OS 20

. . .

App 2

VM 20

Host 2

Figure 1.8: Virtualization as applied to an entire physical system. An OS running on a VM is referred to as a Guest OS and
every physical machine is denoted as a Host. Compared to a Host, a VM can have virtual resources different in Quantity and
Type.

1.5 Virtual Machine Types
There are two main implementations of virtual machines (VMs): process VMs and system VMs.

We will first discuss process VMs and then system VMs.

1.5.1 Process Virtual Machines
A process VM is a virtual machine capable of supporting an individual process as long as the

process is alive. Fig. 1.9 (a) demonstrates process VMs. A process VM terminates when the

hosted process ceases. From a process VM perspective, a machine consists of a virtual memory

address space, user-level registers and instructions assigned to a single process so as to execute

a user program. Based on this definition, a regular process in a general-purpose OS can also

be deemed a machine. However, a process in an OS can only support user program binaries

compiled for the ISA of the host machine. In other words, executing binaries compiled for an

ISA different than that of the host machine cannot be ensued with regular processes. Conversely,

a process VM allows that to happen via what is denoted as emulation. As shown in Fig. 1.10,

emulation is the process of allowing the interfaces and functionalities of one system (the source)

to be employed on a system with different interfaces and functionalities (the target). Emulation

will be discussed in detail in Section 1.6.3. The abstraction of the process VM is provided by

a piece of a virtualizing software called the runtime (see Fig. 1.9 (a)). The runtime is placed at

the Application Binary Interface (ABI), on top of the host OS and the underlying hardware. It is

this runtime that emulates the VM instructions and/or system calls when guest and host ISAs are

different.
Finally, a process VM may not directly correspond to any physical platform but employed

mainly to offer cross-platform portability. Such kinds of process VMs are known as High Level

Physical
machine is a
host

Guest machine
is a GuestOS

System Virtual Machine

Process Virtual Machine

Host OS is integral

Containers: Virtualize OS behavior

What is OS behavior?

Operating System

• Definition 1: A package consisting of the central software for
managing a computer’s resources and all of the accompanying
standard software tools, such as command-line interpreters, graphical
user interfaces, file utilities, and editors.

• Definition 2: The central software that manages and allocates
computer resources (i.e., the CPU, RAM, and devices).
• We often use the term kernel is often as a synonym for the second meaning.

The Linux Kernel

• Textbook: The Linux Programming Interface

• https://github.com/oliverralbertini/the-linux-programming-interface

• Introduction to the ubuntu machine

• Man pages

https://github.com/oliverralbertini/the-linux-programming-interface

3 facts about the kernel

1. Kernel means access to resources

OS/Kernel access

3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

int i = 0;
i = i + 1;
printf("Hello World");

• At some point of the program kernel became the owner of this process to print this for you.
• Kernel never relinquishes control over resources.

3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

3. Kernel is not a process but the process manager.
• init
• pstree

System Calls

• A system call is a common, controlled entry point into the kernel,
allowing a process to request that the kernel perform some action on
the process’s behalf.

• By common we imply all processes use this method.
• By controlled we imply that sharing has to be done safely.

• Examples of system calls: creating a new process, performing I/O, and
creating a pipe for interprocess communication.

3 facts about system calls

1. A system call changes **the process state** from user mode to kernel mode,
so that the CPU can access protected kernel memory.

2. System calls are akin to calling C functions except these functions perform
some standard steps

• Each system call may have a set of arguments that specify information to be transferred from
user space (i.e., the process’s virtual address space) to kernel space and vice versa.

3. Set of system calls is fixed. Each system call is identified by a unique number.
• Note: there are a total of 329 calls. See here for a listing
• http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

46 Chapter 3

Figure 3-1: Steps in the execution of a system call

Appendix A describes the strace command, which can be used to trace the system
calls made by a program, either for debugging purposes or simply to investigate
what a program is doing.

More information about the Linux system call mechanism can be found in
[Love, 2010], [Bovet & Cesati, 2005], and [Maxwell, 1999].

3.2 Library Functions
A library function is simply one of the multitude of functions that constitutes the
standard C library. (For brevity, when talking about a specific function in the rest of
the book we’ll often just write function rather than library function.) The purposes of
these functions are very diverse, including such tasks as opening a file, converting a
time to a human-readable format, and comparing two character strings.

Many library functions don’t make any use of system calls (e.g., the string-
manipulation functions). On the other hand, some library functions are layered on
top of system calls. For example, the fopen() library function uses the open() system
call to actually open a file. Often, library functions are designed to provide a more
caller-friendly interface than the underlying system call. For example, the printf()
function provides output formatting and data buffering, whereas the write() system

Trap handlerSystem call
service routine

sw
itch to kernel m

ode

...
execve(path,
 argv, envp);
...

Application
program

execve(path, argv, envp)
{
 ...
 int 0x80
 (arguments: __NR_execve,
 path, argv, envp)
 ...
 return;
}

glibc wrapper function
(sysdeps/unix/

 sysv/linux/execve.c)

system_call:

 ...

 call sys_call_table
 [__NR_execve]
 ...

(arch/x86/kernel/entry_32.S)

sys_execve()
{

 ...

 return error;
}

(arch/x86/kernel/
process_32.c)

sw
itch to user m

ode

User Mode

Kernel Mode

Demo

• #include <fcntl.h>
int main() {
int fd = open("HelloWorld.txt", 0); }

• $ strace ./openHelloWorld```

• $ gdb openHelloWorld
• ``` b openHelloWorld.c:4```
• ``` r```
• ```s ```
• ```disassemble```

Overview of System Calls

• I/O system calls
• Process lifecycle system calls
• Networking system calls
• IPC system calls
• Security system calls

Examples of System Calls

• getuid() //get the user ID
• read() // read a buffer worth of data
• execve() //execute a program

• Don’t mix system calls with standard library functions
• Is printf() a system call?
• Is rand() a system call?

System calls in a program

• Some library functions have embedded system calls. For instance, the
library routines scanf and printf make use of the system calls read
and write.

System Calls Vs Library Routines

• System calls look very much like a library routine
• How do we know what is and what isn’t a system call?
• All you have to remember which is which

• 2: System Call
• 3: Library Call

• Read documentation about system calls:
• % man read
• http://man7.org/linux/man-pages/man2/read.2.html

• Read documentation about library functions:
• % man fread
• http://man7.org/linux/man-pages/man3/fread.3.html

http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man3/fread.3.html

Unix: Everything is a file

• Files are central to the UNIX philosophy.
• In the most basic form, a UNIX file is a sequence of bytes
• B0,B1,....,Bk ,....,Bm-1

• All I/O devices (e.g.,network,disks, terminals) are modeled as files
• A simple and elegant low-level interface
• For example:

• /dev/sda // Hard disk
• /dev/tty // terminal for the current process
• /proc/cpuinfo CPU as deduced by the kernel

File descriptiors: Kernel identification of a file

• All system calls for performing I/O refer to open files using a file
descriptor, a (usually small) nonnegative integer.
• FDs refer to open files, where file is
• Pipe
• FIFOs
• Sockets
• Terminals
• Regular files
• Processe control block

• Standard file descriptors

70 Chapter 4

behalf by the shell, before the program is started. Or, more precisely, the program
inherits copies of the shell’s file descriptors, and the shell normally operates with
these three file descriptors always open. (In an interactive shell, these three file
descriptors normally refer to the terminal under which the shell is running.) If I/O
redirections are specified on a command line, then the shell ensures that the file
descriptors are suitably modified before starting the program.

When referring to these file descriptors in a program, we can use either the numbers
(0, 1, or 2) or, preferably, the POSIX standard names defined in <unistd.h>.

Although the variables stdin, stdout, and stderr initially refer to the process’s
standard input, output, and error, they can be changed to refer to any file by
using the freopen() library function. As part of its operation, freopen() may
change the file descriptor underlying the reopened stream. In other words,
after an freopen() on stdout, for example, it is no longer safe to assume that the
underlying file descriptor is still 1.

The following are the four key system calls for performing file I/O (programming
languages and software packages typically employ these calls only indirectly, via I/O
libraries):

z fd = open(pathname, flags, mode) opens the file identified by pathname, returning
a file descriptor used to refer to the open file in subsequent calls. If the file
doesn’t exist, open() may create it, depending on the settings of the flags bit-
mask argument. The flags argument also specifies whether the file is to be
opened for reading, writing, or both. The mode argument specifies the permis-
sions to be placed on the file if it is created by this call. If the open() call is not
being used to create a file, this argument is ignored and can be omitted.

z numread = read(fd, buffer, count) reads at most count bytes from the open file
referred to by fd and stores them in buffer. The read() call returns the number of
bytes actually read. If no further bytes could be read (i.e., end-of-file was
encountered), read() returns 0.

z numwritten = write(fd, buffer, count) writes up to count bytes from buffer to the
open file referred to by fd. The write() call returns the number of bytes actually
written, which may be less than count.

z status = close(fd) is called after all I/O has been completed, in order to release
the file descriptor fd and its associated kernel resources.

Before we launch into the details of these system calls, we provide a short demon-
stration of their use in Listing 4-1. This program is a simple version of the cp(1)
command. It copies the contents of the existing file named in its first command-
line argument to the new file named in its second command-line argument.

Table 4-1: Standard file descriptors

File descriptor Purpose POSIX name stdio stream

0 standard input STDIN_FILENO stdin
1 standard output STDOUT_FILENO stdout
2 standard error STDERR_FILENO stderr

Unix I/O

• fd = open(file, how, ...) // open a file for reading, writing or both
• s = close(fd) // close an open file
• n = read(fd, buffer, nbytes) //read data from a file into a buffer
• n = write(fd, buffer, nbytes) //write data from a buffer into a file
• position = lseek(fd, offset, whence) //move the file pointer
• fd = creat(file,how)
• s = stat(name, &buf) // get a file’s status information from filesystem
• link(), unlink() // aliasing and removing files

Kernel View of Files

• It seems there is a one-to-one correspondence between a file
descriptor and an open file. In practice not true.
• Multiple descriptors referring to the same open file.
• These file descriptors may be open in the same process or in different

processes.
• These may have different file status flags, and may even have different offsets

within the file.

Kernel Data structure

• 3 important data structures kernel maintains for open files
• the per-process file descriptor table;
• the system-wide table of open file descriptions; and
• the file system i-node table.

Open file table

• System-wide table, one entry for each open file on system:
• File offset
• File access mode (R / W / R-W, from open())
• File status flags (from open())
• Signal-driven I/O settings
• Reference to i-node object for file

struct file in include/linux/fs.h
• Following terms are commonly treated as synonyms:

• open file description (OFD) (POSIX)
• open file table entry or open file handle
• (These two are ambiguous; POSIX terminology is preferable)

Open File Table (table of open file
descriptions)

I-node Table

• System-wide table drawn from file i-node information in filesystem:
• File type (regular file, FIFO, socket, . . .)
• File permissions
• Other file properties (size, timestamps, . . .)
• struct inode in include/linux/fs.h

Why does it matter?
• Two different FDs referring to same OFD share file offset
• (File offset == location for next read()/write())
• Changes (read(), write(), lseek()) via one FD visible via other FD
• Applies to both intraprocess & interprocess sharing of OFD

• Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
• Changes via one FD are visible via other FD

• Conversely, changes to FD flags (held in FD table) are private
to each process and FD

File: dup

#include <unistd.h>
int dup(int oldfd)
• Takes oldfd, an open file descriptor, and returns a new descriptor that

refers to the same open file description.
• The new descriptor is guaranteed to be the lowest unused file

descriptor.
• Returns

(new) file descriptor on success, or –1 on error
• newfd = dup(1);

Example

main() {

int fd1, fd2;

fd1 = open("file1", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = open("file1", O_WRONLY);

}

Example

main() {

int fd1, fd2;

fd1 = open("file1", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = open("file1", O_WRONLY);

write(fd1, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fd1);

close(fd2);

}

Example

#include <fcntl.h>

#include <stdio.h>

main() {

int fd1, fd2;

fd1 = open("file2", O_WRONLY | O_CREAT | O_TRUNC, 0644);

fd2 = dup(fd1);

write(fd1, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fd1);

close(fd2);

}

