Resource Virtualization with
Containers

Tanu Malik
School of Computing, DePaul University
Visiting Faculty, CSE, IIT, Delhi

COVE32

* Course website: https://dice.cs.depaul.edu/courses/882/index.html
* Course mailing list: 2201-cov882 @courses.iitd.ac.in
* Team: 2201-COV882 SPECIAL MODULE IN SOFTWARE SY.

e Baadal for HW (request VM)
* Ubuntu 20.04 1 CPU 2GM memory 80 GB HDD

* Discord for discussions: https://discord.gg/sydFh5rq

* Moodle for submissions
* Send email: tmalik@cse.iitd.ac.in or tanu.malik@depaul.edu

https://dice.cs.depaul.edu/courses/882/index.html
mailto:2201-cov882@courses.iitd.ac.in
mailto:tmalik@cse.iitd.ac.in

Resource Virtualization with Containers

e Resource
* Virtual-ization
e Containers

Process of virtualization in which we establish views on cpus, disks, network

Why is this course important?

* App
* App
* App
* App
* App

ications in cloud computing
ications in software engineering
ications in systems and security
ications in reproducibility
ications in data storage

It is a multi-billion dollar industry

Course Objectives

* Understand and explore system concepts necessary to understand
containers

* Develop and establish different types of bare bones containers

* Explore containers in the commercial and research world

Virtualization Vs Abstraction

A Computer System

CPU

Memory
translation

|/O devices
and
networking

Main
memory

Software

Hardware

A Computer System

Apps
Libraries - Software
0S
CPU
Memory
translation

Hardware

|/O devices
and
networking

Main
memory

Well-defined abstraction interfaces

API

ABI

ISA

Apps

Libraries

OS

|/O devices
and
networking

CPU

Memory

translation

Main
memory

Software

Hardware

APl Vs ABI Vs ISA

* APl is used by high-level language (HLL) programmers to invoke some
library or OS features.

* An APl enables compliant applications to be ported easily (via recompilation) to any
system that supports the same API.
* The ABI is a compiled version of the API.

* Itis at the machine language level. With ABI, system functionalities are accessed
through OS system calls.

* A source code compiled to a specific ABI can run unchanged only on a system with
the same OS and ISA.

* |SA defines a set of storage resources (e.g., registers and memory) and a
set of instructions that allows manipulating data held at storage resources.

* |SA lies at the boundary between hardware and software.

Abstraction

* Abstraction means hide the details of the layer below and only
expose a logical view.

e Quiz?

Abstraction

* Abstraction means hide the details of the layer below and only
expose a logical view.

* Quiz: Have you as a programmer ever used the concept of abstraction
for any other part of the computer system?

Abstraction
* The details of a hard disk are abstracted by the OS

* Disk storage appears to applications as a set of variable-size files.

* Disk storage is locations and sizes of cylinders, sectors, and tracks or
bandwidth allocations at disk controllers.

* Programmers are not aware of it. They can simply create, read, and write files
without knowledge of the way the hard disk is constructed or organized.

File File

Abstraction ™\ / P

(a)

What is the disadvantage of abstraction via
interfaces?

INC

| this socket enable access to electricity in
ja?

Will this socket enable access to electricity in
the US?

Best Modular Switch Brands

Solution? Adaptor

* Any problems with this solution?

Virtualization

* Virtualization does not necessarily aim to simplify or hide details.

Virtualization

Virtualization \\ ,
\

(b)

File

File

* Example

e An Intel CPU with Linux installed
and a AMD CPU with Linux
installed on it.

* Compile source code into machine
code in each machine but cannot
take the machine code from one

machine and simply run on another
machine.

Virtualization Isomorphism

e Construction of an isomorphism that maps a virtual guest
resource/system to a real host system/resource

V(S)

e(S)

AN
Cd

Guest

e’(Sy)

Host

Hypervisor is an implementation of this

iIsomorphism

A full set of hardware resources, including processors, memory, and

/0O devices will be virtualized to provide the VM.

App 1 |App 2] App 3

Guest OS 20
VM 20
OO0 000000
Virtual Memory L]
0oa ;a1 10 000 DDDODDooo
800 virtual storage 060 668660666

. Resource
Hypervisor Mapping

Host1 Host 2
O OO0 [OOOO| physical Processors
| FEFEFFEEEEIEEH | (O l| Physical Memory
OO0000) (00000 Physical 10
s]ulu]u]uls] | (s]sfs]s]ss] Physical Storage

Guest machine
is a GuestOS

Physical
machine is a
host

System Virtual Ma

chine

Application
Software
Layer

Infrastructure
Layer

Virtualization
Layer

- | N || n [0 |~) A= b= o L I e s
alallalalal|a|a o a
3|2 (222 2| z ||= § § § E E
WIN- WIN-
DOWS LINUX LINUX LINUX DOWS RTOS RTOS
VM 1 VM 2 VM 3 VM 4 VM5 VM 6 VM 7
, “:"":"-’ ------- :I'ype 1 (“Bare Métal”) Hypervisor
Core Core Core Core
i-Cache Id-Cache i-Cache | d-Cache i-Cache | d-Cache i-Cache | d-Cache
L2 Cache L2 Cache L2 Cache L2 Cache
| L3 Cache ‘
I System Bus ‘
Multicore 5 : : :
Processor | Memory Fontroller | | 1/0 Cor_1trol|er ‘ | ‘ | |

| MainIVIIemory ‘| I/OD.evice ‘|

Physical
Hardware
Layer

Process Virtual Machine

| MainIV'Iemory I’ I/OD'evice ‘I

- [N || n| | © |~) oISt o (I Application
ala|lalajal|a|a o | &I -~ x| A Software
& 2 2 2 2 2 & 2- 2 & & & & & Layer
WIN- W‘I'N- . B Infrastructure
DOWS LINUX LINUX LINUX DOWS RTOS RTOS ISyer{Gucat)
VM1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 7
3 . . T T T T Virtualization
o TR e : Layer
et b Type 2 (“Hosted”) Hypervisor
: : s ! Infrastructure
: : Host OS & ;
: : o g Layer (Host)
Core Core Core Core
i-Cache | d-Cache i-Cache | d-Cache i-Cache | d-Cache i-Cache Id-Cache
L2 Cache L2 Cache L2 Cache L2 Cache
[L3 C?che Physical
H Hardware
| System Bus Layer
Multicore : : i :
Processor | Memory Controller | | 1/0 Controller ‘ | | l |

Host OS is integral

T O |- o 0 | < Applicati
Application SRR 2 S 0 olald o O || & pplication
Soft e la|llalalal|a|a o === - = | = Software
ortware < | < <L | <L | L < | < < <L |1 < < | < Layer
Layer ! H R ; s
WIN- ‘I‘N- 5 Infrastructure
Infrastructure DOWS Elilihs e LINUX DOWS BISS RTOS Layer (Guest)
Layer i § z s : a
VM 1 VM 2 VM 3 VM 4 VM 5 VM 6 VM7
. . H H H T T Virtualization
Virtualization T : 3 Layer
Layer 3 et Type 2 (“Hosted”) Hypervisor
H : : : : Host OS Infrastructure
: : H : : Layer (Host)
Core Core Core Core "
i-Cache |d-Cache i-Cache | d-Cache i-Cache |d-Cache i-Cache Id-Cache C(;re Cc;re Colre Cc;re
L2 c'aChe L2 Cache L2 C'aChe L2 c'aChe i-Cache I d-Cache i-Cache | d-Cache i-Cache | d-Cache i-Cache | d-Cache
: : : H L2 Cache L2 Cache L2 Cache L2 Cache
| L3 Cache Physical :] : :
: Hardware | L3 Cache Physical
| System Bus Layer : Hardware
Multicore 5 B : K :] ; | l I : L : Layer
Memory Controller 1/0 Controller Multicore : : :
Processor : : : : Processor | Memory Controller | | 1/0 Controller | | | | ‘
| Main Memory | | 1/0 Device | | | | | :

’ Main Memory || I/OD'evice |’

Containers: Virtualize OS behavior

VIRTUALIZATION CONTAINERS

APP APP

GUEST
0s

VS. SUPPORTING FILES SUPPORTING FILES

RUNTIME RUNTIME

HOST OPERATING SYSTEM

HYPERVISOR

HOST OPERATING SYSTEM

What is OS behavior?

Operating System

* Definition 1: A package consisting of the central software for
managing a computer’s resources and all of the accompanying
standard software tools, such as command-line interpreters, graphical
user interfaces, file utilities, and editors.

e Definition 2: The central software that manages and allocates
computer resources (i.e., the CPU, RAM, and devices).

* We often use the term kernel is often as a synonym for the second meaning.

The Linux Kernel

* Textbook: The Linux Programming Interface

e https://github.com/oliverralbertini/the-linux-programming-interface

* Introduction to the ubuntu machine

* Man pages

https://github.com/oliverralbertini/the-linux-programming-interface

3 facts about the kernel

1. Kernel means access to resources

OS/Kernel access

Source Code ...

Pre Processor

Pre-processed .-
Code ..
|
Compiler
Target, .
Assembly Code
““A v
Assembler
Relocatable . .-
Machine Code - .
S —» Library files/
Linker Relocatable
“— modules
Executable ...
Machine Code -
. /
Loader

3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

inti=0;
i=i+1;
printf("Hello World");

* At some point of the program kernel became the owner of this process to print this for you.
* Kernel never relinquishes control over resources.

3 facts about the kernel

1. Kernel means access to resources

2. Distinction between kernel and userspace

3. Kernel is not a process but the process manager.
* init
* pstree

System Calls

* A system call is a common, controlled entry point into the kernel,
allowing a process to request that the kernel perform some action on
the process’s behallf.

* By common we imply all processes use this method.

* By controlled we imply that sharing has to be done safely.

» Examples of system calls: creating a new process, performing 1/0, and
creating a pipe for interprocess communication.

3 facts about system calls

1. A system call changes **the process state** from user mode to kernel mode,
so that the CPU can access protected kernel memory.

2. System calls are akin to calling C functions except these functions perform
some standard steps

* Each system call may have a set of arguments that specify information to be transferred from
user space (i.e., the process’s virtual address space) to kernel space and vice versa.

3. Set of system calls is fixed. Each system call is identified by a unique number.
* Note: there are a total of 329 calls. See here for a listing
* http://blog.rchapman.org/posts/Linux_System_Call Table for x86_64/

Application
program

execve(path,
argv, envp);

service routine

/ {

User Mode
glibc wrapper function
(sysdeps/unix/
sysv/linux/execve.c)

execve(path, argv, envp)

int 0x80 >
(arguments: __NR_execve,

path, argv, envp)

(arch/x86/kernel/entry 32.5)

| e -
[— return;
%)
J .
__________________________________ 4 S
)
g
———————————— Kernel Mode - - - --=-=-=-=-==—-—-— 3
System call Trap handler <
S
3
N

(arch/x86/kernel/
process 32.c)

return error;

-
[
|
|
|
|
[
|
[
| sys_execve()
|
[
|
[
|
[
|
|
[
|

{ T

_———/’__'ooo

system call: -

[call sys_call table
[NR execve]

\

IPOUL LISTL 0 Y2)UMS

Demo

e #include <fcntl.h>
int main() {
int fd = open("HelloWorld.txt", 0); }

* S strace ./openHelloWorld™™

S gdb openHelloWorld

. " b openHelloWorld.c:4™
° AVA VY r-\\\
° \\S

. ““disassemble

Overview of System Calls

* |/O system calls

* Process lifecycle system calls
* Networking system calls

* |IPC system calls

* Security system calls

Examples of System Calls

 getuid() //get the user ID
 read() // read a buffer worth of data
» execve() //execute a program

* Don’t mix system calls with standard library functions
* |s printf() a system call?
* Is rand() a system call?

System calls in a program

* Some library functions have embedded system calls. For instance, the
library routines scanf and printf make use of the system calls read
and write.

Executable J

/ { Progmln
)

¥

[Library Functions]——- [System Calls J

[Hardware J

System Calls Vs Library Routines

e System calls look very much like a library routine
* How do we know what is and what isn’t a system call?

* All you have to remember which is which

e 2:System Call
e 3: Library Call

* Read documentation about system calls:
* % man read
e http://man7.org/linux/man-pages/man2/read.2.html

* Read documentation about library functions:
* % man fread
e http://man7.org/linux/man-pages/man3/fread.3.html

http://man7.org/linux/man-pages/man2/read.2.html
http://man7.org/linux/man-pages/man3/fread.3.html

Unix: Everything is a file

* Files are central to the UNIX philosophy.

* In the most basic form, a UNIX file is a sequence of bytes
 BO,B1,....,.Bk,.....Bm-1

 All 1/0O devices (e.g.,network,disks, terminals) are modeled as files
* Asimple and elegant low-level interface

* For example:
. /dev/sda // Hard disk
« /dev/tty // terminal for the current process
» /proc/cpuinfo CPU as deduced by the kernel

File descriptiors: Kernel identification of a file

* All system calls for performing |/O refer to open files using a file
descriptor, a (usually small) nonnegative integer.

* FDs refer to open files, where file is
* Pipe
* FIFOs
* Sockets
* Terminals
* Regular files
* Processe control block

Table 4-1: Standard file descriptors

e Standard file descriptors e deserpior TPorpose— TFOST mame [ivam

standard input | STDIN_FILENO | stdin

1 standard output | STDOUT_FILENO | stdout
2 standard error | STDERR_FILENO | siderr

Unix 1/0

 fd = open(file, how, ...) // open a file for reading, writing or both

* s = close(fd) // close an open file

* n = read(fd, buffer, nbytes) //read data from a file into a buffer

* n = write(fd, buffer, nbytes) //write data from a buffer into a file

* position = Iseek(fd, offset, whence) //move the file pointer

 fd = creat(file,how)

* s = stat(hame, &buf) // get a file’s status information from filesystem
* link(), unlink() // aliasing and removing files

Kernel View of Files

* |t seems there is a one-to-one correspondence between a file
descriptor and an open file. In practice not true.

* Multiple descriptors referring to the same open file.

* These file descriptors may be open in the same process or in different
processes.

* These may have different file status flags, and may even have different offsets
within the file.

Kernel Data structure

* 3 important data structures kernel maintains for open files
* the per-process file descriptor table;
* the system-wide table of open file descriptions; and
* the file system i-node table. N open e e N

File descriptor table (system-wide) (system-wide)

fd | file file | status | inode file | file
flags | ptr offset | flags ptr type | locks | ™

fd o .

fd 1 J 224

/|

fa2 23 B

fd 20 1976

Process B
File descriptor table

fd | file 73
flags | ptr

fdo

O

fd1 86 y 5139

fd2

fd 3

Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes

Process A Open file table I-node table
File descriptor table (system-wide) (system-wide)

fd | file file | status | inode file | file
flags | ptr offset | flags ptr type | locks

fd 0 -

fd 1 N 224

/|

f(12 \v 23 =

1976

1d 20 -

Process B
File descriptor table

fd | file 73 \
flags | ptr

fd0

.

fd 1 86 5139

fd 2

AN

fd 3 7

Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes

Open file table

e System-wide table, one entry for each open file on system:
* File offset

* File access mode (R /W / R-W, from open())

* File status flags (from open())

e Signal-driven 1/O settings

* Reference to i-node object for file
struct file in include/linux/fs.h

* Following terms are commonly treated as synonymes:
* open file description (OFD) (POSIX)
» open file table entry or open file handle
e (These two are ambiguous; POSIX terminology is preferable)

Open File Table (table of open file

descriptio

NS

The Fi)e Table
contains a reference to
all open files across all

rocess.
p /

-
-—
—
—
-
-
-
-
-

-
—
—
—
-
-

The offset refers to
where in the file will the
next byte be read/
wrote. E.qg., after
reading 10 bytes, the
offset is 10.

File Table

status flags

offset

v-node Pointer

status flags

offset

v-node Pointer

Each entry has a
status flag which
indicates if the file is
read or write or non-

—
- .
—

status flags

offset

v-node Pointer

-
—_—
-

The v-node pointer
references information
about the type of file,
e.g., is it a terminal

device, like stdin, or a
file that exists on disc.

l-node Table

e System-wide table drawn from file i-node information in filesystem:
* File type (regular file, FIFO, socket, . . .)

* File permissions

e Other file properties (size, timestamps, . . .)

o struct inode in include/linux/fs.h

Why does it matter?

* Two different FDs referring to same OFD share file offset
* (File offset == location for next read()/write())
* Changes (read(), write(), Iseek()) via one FD visible via other FD
* Applies to both intraprocess & interprocess sharing of OFD

 Similar scope rules for status flags (O _APPEND, O _SYNGC, .. .)
* Changes via one FD are visible via other FD

* Conversely, changes to FD flags (held in FD table) are private
to each process and FD

File: dup

#include <unistd.h>
int dup(int oldfd)

* Takes oldfd, an open file descriptor, and returns a new descriptor that
refers to the same open file description.

* The new descriptor is guaranteed to be the lowest unused file
descriptor.

* Returns
(new) file descriptor on success, or —1 on error

* newfd = dup(1);

Example

main() {

int f£d1, £d2;
fdl = open("filel", O WRONLY | O CREAT | O TRUNC, 0644);

fd2 = open("filel", O WRONLY);

Example

main() {
int fdl, £d2;

fdl
fd2

open("filel", O WRONLY | O CREAT | O TRUNC, 0644);
open("filel"”, O WRONLY) ;

write(fdl, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(£fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fdl);
close(£fd2);

Example

#include <fcntl.h>
#include <stdio.h>

main() {

int fd1l, £d4d2;

fdl = open("file2", O WRONLY | O CREAT | O TRUNC, 0644);

fd2

dup(£fdl);

write(fdl, "The Brown Dog\n", strlen("The Brown Dog\n"));

write(£fd2, "Jumped over the moon\n", strlen("Jumped over the moon\n"));

close(fdl);
close(£fd2);

