
CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing

DePaul University

Serial Schedules

• So far we have seen sufficient conditions that allows us to check
whether the schedule is serializable.
• Serial
• Serializable
• Conflict serializable
• View serializable
• Recoverability

• Recoverable
• Avoids cascading deletes

Scheduler

• The scheduler:
• Module that schedules the transaction’s actions, ensuring serializability

Scheduler needs CC

• Two main approaches
• Pessimistic CC:

• Lock-based concurrency control needs deadlock detection
• Prevents unserializable schedules
• Never abort for serializability (but may abort for deadlocks)
• Best for workloads with high levels of contention

• Optimistic:
• Timestamp-based concurrency control
• Tracking of read-set/write-set, validation before commit.

• Assume schedule will be serializable
• Abort when conflicts detected
• Best for workloads with low levels of contention

• Multi-version: less concurrency overhead for read-only queries

Timestamp-based CC—High level

1. Assign a timestamp to each transaction (txn).
2. Record the timestamps of the txn that last read or wrote a database

object O.
3. Ensure that actual schedule (wrt read/write elements) is equivalent

to a serial schedule according to txn timestamps.
• Otherwise rollback.

The timestamp order of elements defines the serialization order of the transactions
Will generate a schedule that is view-equivalent to a serial schedule, and recoverable

Timestamps

• Each transaction receives unique timestamp TS(T)
• When it enters the system

• What does timestamp tell us:
A unique order

• Could be:
• The system’s clock
• A unique counter, incremented by the scheduler

T1: 10:00, T2: 10:01,
T3: 10:04

TS(T1): 100
TS(T1): 200
TS(T3): 300

Oldest

Youngestt

Timestamps

• With each database object X, associate
• RT(X) = the highest timestamp of any transaction U that read X
• The timestamp of the last (most recent) transaction which performed read

successfully
• WT(X) = the highest timestamp of any transaction U that wrote X
• The timestamp of the last (most recent) transaction which performed read

successfully

• If transactions abort, we must reset the
individual timestamps

Example

• TS(T1): 10; TS(T2): 20; TS(T3): 30

T1 T2 T3

R(A)

R(A)

R(A)

RT(A) = 30

Example

• TS(T1): 10; TS(T2): 20; TS(T3): 30

T1 T2 T3

W(A)

W(A)

W(A) WT(A) = ?

Example

• TS(T1): 10; TS(T2): 20; TS(T3): 30

T1 T2 T3

W(A)

W(A)

W(A) WT(A) = ?

commit

C(X) = ?

Timestamp-based CC—High level

1. Assign a timestamp to each transaction (txn).
2. Record the timestamps of the txn that last read or wrote a database

object O.
3. Ensure that actual schedule (wrt read/write elements) is equivalent

to a serial schedule according to txn timestamps.
• Otherwise, rollback.

Conflicts acceptable according to Txn
timestamps
• The transaction that comes earlier must also complete earlier

according to read/write timestamps.
• Older txns are given priority.

T1 = 100 T2 = 200

r1(A)

w2(A)

T1 = 100 T2 = 200

w1(A)

r2(A)

T1 = 100 T2 = 200

w1(A)

w2(A)

Let these proceed under the assumption that they will commit

Conflicts in Timestamps

• For any rT(X) or wT(X) request, check for conflicts:

• wU(X) . . . rT(X)
• rU(X) . . . wT(X)
• wU(X) . . . wT(X)

How to check if read is too late?
Or write is too late?

Conflicts in Timestamps

• For any rT(X) or wT(X) request, check for conflicts:

• wU(X) . . . rT(X)
• rU(X) . . . wT(X)
• wU(X) . . . wT(X)

How to check if read is too late?
Or write is too late

Fundamental Observation:

When T requests rT(X) or wT(X), need to check TS(U) ≤ TS(T)

Example: Read too late

• T wants to read X

• begin(T)… begin(U) … wU(X)… rT(X)

T start U start

U writes X
T reads X

Example: Read too late

• T wants to read X

• begin(T)… begin(U) … wU(X)… rT(X)

• If WT(X) (= TS(U)) > TS(T) then need to rollback T !
• T tried to read too late!

T start U start

U writes X
T reads X

T should not be allowed to perform a
non-serializable read
Therefore, rollback T

Example: Write too late

• T wants to write X

• begin(T)… begin(U) … rU(X)… wT(X)

T start U start

U reads X
T writes X

Example: Write too late

• T wants to read X

• begin(T)… begin(U) … rU(X)… wT(X)

• If RT(X) (= TS(U)) > TS(T) then need to rollback T.
• T tried to write too late!

T start U start

U reads X
T writes X

U should not be allowed to perform an inconsistent read
Therefore, rollback T

Conflict Serializability

• The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
• Timestamp protocol ensures freedom from deadlock as no

transaction ever waits.

transaction
with smaller
timestamp

transaction
with larger
timestamp

Thomas Rule for Write-Write Conflict

• But… we do not need to rollback in one case:

• T wants to write X

• START(T) … START(U) … wU(X) . . . wT(X)

T start U start

U writes X
T writes X

Thomas Rule

• But… we can still handle it in one case:

• T wants to write X

• START(T) … START(U) … wU(X) . . . wT(X)

WT(X) (= TS(U)) > TS(T) then don’t write X at all!

Thomas Rule

• But… we can still handle it in one case:

• T wants to write X

• START(T) … START(V)…START(U) … WU(X) . . .RV(X)… WT(X)

If RT(X) ≤ TS(T) and WT(X) (= TS(U)) > TS(T) then don’t write X at all!

Because no other transaction V that should have read T’s value got U’s value
since V would have been aborted because of too-late read.

Summary so far

• Only for transactions that do not abort
• Otherwise, may result in non-recoverable schedule

• Transaction wants to READ element X
• If WT(X) > TS(T) then ROLLBACK
• Else READ and update RT(X) to larger of TS(T) or RT(X)

• Transaction wants to WRITE element X
• If RT(X) > TS(T) then ROLLBACK
• Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
• Else, WRITE and update WT(X) =TS(T)

How to deal with aborts?

• C(X) = the commit bit: true when transaction with highest timestamp
that wrote X committed
• True if the last (most recent) transaction committed.

Dealing with Aborts-Case 1 (Lost update)

T start U start

U writes X
T writes X

T commits U aborts

Dealing with Aborts-Case 2: Dirty Reads

U start T start

U writes X T reads X

U abortT commit

Ensuring Recoverable Schedules

• Use the commit bit C(X) to keep track if the transaction that last
wrote X has committed (just a read will not change the commit bit)

• Recall:

• Schedule avoids cascading aborts if whenever a transaction reads an
element, then the transaction that wrote it must have already
committed

Ensuring Recoverable Schedules

• Read dirty data:

• T wants to read X, and WT(X) < TS(T)
• Seems OK, but…

• START(U) … START(T) … WU(X). . . RT(X)… ABORT(U)

• If C(X)=false, T needs to wait to commit for it to become true

Ensuring Recoverable Schedules

• Thomas’ rule needs to be revised:
• T wants to write X, and WT(X) > TS(T)
• Seems OK not to write at all, but …

• START(T) … START(U)… WU(X). . . WT(X)… ABORT(U)

• If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

• When a transaction T requests RT(X) or WT(X), the scheduler examines
RT(X), WT(X), C(X), and decides one of:

• To grant the request, or
• To rollback T (and restart with later timestamp)
• To delay T until C(X) = true

Timestamp-based Scheduling

Transaction wants to READ element X
• If WT(X) > TS(T) then ROLLBACK
• Else If C(X) = false, then WAIT
• Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
• If RT(X) > TS(T) then ROLLBACK
• Else if WT(X) > TS(T) Then

• If C(X) = false then WAIT
• Else IGNORE write (Thomas Write Rule)

• Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Example

T1 T2 T3 T4 A

150 200 175 225 RT= 0, WT= 0

R(A) RT = 150

W(A) WT = 150

R(A) RT = 200

W(A) WT = 200

R(A)

Abort

R(A) RT = 225

WT > TS(T3)

T1 T2 T3 T4

1 2 3 4 RT(A) = 0
WT(A) = 0 C = true

T1 T2 T3 T4

1 2 3 4 RT(A) = 0
WT(A) = 0 C = true

W(A)

R(A)

R(A)

commit

R(A)

W(A)

W(A)

abort

W(A)

T1 T2 T3 T4

1 2 3 4 RT(A) = 0
WT(A) = 0 C = true

W(A) RT(A) = 0
WT(A) = 2 C = false

R(A)

abort

R(A) delay

commit RT(A) = 0
WT(A) = 2 C = true

R(A) RT(A) = 3
WT(A) = 2 C = true

W(A) RT(A) = 0
WT(A) = 4 C = false

W(A) delay

abort RT(A) = 0
WT(A) = 2 C = true

W(A) RT(A) = 0
WT(A) = 3 C = false

Summary of Timestamp-based Scheduling

• View-serializable
• Avoids cascading aborts (hence: recoverable)
• Does NOT handle phantoms
• These need to be handled separately, e.g. predicate locks

Multiversion Timestamp

• When transaction T requests R(X)
• but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X: Xt , Xt-1, Xt-2, . . .

• TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details

• When wT(X) occurs, if the write is legal then create a new version,
denoted Xt where t = TS(T)

• When rT(X) occurs, find most recent version Xt such that t <= TS(T)
• WT(Xt) = t and it never changes for that version
• RT(Xt) must still be maintained to check legality of writes

Example

T1 T2 T3 T4 A

150 200 175 225 RT= 0, WT= 0

R(A) RT = 150

W(A) WT = 150

R(A) RT = 200

W(A) WT = 200

R(A)

Abort

R(A) RT = 225

WT > TS(T3)

Example

T1 T2 T3 T4 A

150 200 175 225 RT= 0, WT= 0

R(A) RT = 150

W(A) WT = 150; Create X1

R(A) RT = 200

W(A) WT = 200; Create X2

R(A) ßX1 RT = 200

W(A); Abort

R(A) RT = 225

Example

T1 T2 T3 T4 A

150 200 175 225 RT= 0, WT= 0

R(A) RT = 150

W(A) WT = 150

R(A) RT = 200

W(A) WT = 200

R(A)

Abort

R(A) RT = 225

Transaction Management

• Two parts:
• Concurrency control: ACID
• Recovery from crashes: ACID

• We already discussed concurrency control You are implementing
locking in lab3

• Today, we start recovery

Types of Failures

• Type of Crash Prevention
• Wrong data entry
• Constraints and Data cleaning

• Disk crashes Redundancy:
• e.g. RAID, archive

• Data center failures
• Remote backups or replicas

• System failures:
• e.g. power DATABASE RECOVERY

System Failures

• Each transaction has internal state
• When system crashes, internal state is lost

• Don’t know which parts executed and which didn’t
• Need ability to undo and redo

Buffer Pool

CSE 544 - Magda Balaznska, Winter 2015

Impact of Buffer Manager

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block

MPCS 53003

Choice of
frame

dictated by
replacement

policy

• Enables higher layers of the DBMS to assume that needed data is in
main memory
• Caches data in memory.

• Problems when crash occurs:
• If committed data was not yet written to disk
• If uncommitted data was flushed to disk

A model for transactions

• Database state: The space of disk blocks holding the database
elements
• Buffer manager: The virtual or main memory address space
• Transaction state: The local address space of the transaction

MPCS 53003

Primitive Operations
• READ(X,t)
• copy value of data item X to transaction local variable t

• WRITE(X,t)
• copy transaction local variable t to data item X

• INPUT(X)
• read page containing data item X to memory buffer

• OUTPUT(X)
• write page containing data item X to disk

MPCS 53003

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)

t = t* 2

WRITE(A,t)

INPUT(B)

READ(B,t)

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2

WRITE(A,t)

INPUT(B)

READ(B,t)

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example: is this bad?

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Yes A = 16, B = 8

Example: is this bad?

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Yes A = 16, B = 16
But not committed

Example: is this bad?

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

No; DB is consistent

Example (Output after commit)

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Atomic Transactions

• FORCE or NO-FORCE
• Should all updates of a transaction be forced to disk before the transaction

commits?

• STEAL or NO-STEAL
• Can an update made by an uncommitted transaction overwrite the most

recent committed value of a data item on disk?

Force/No-Steal
(Most strict)
• FORCE: Pages of committed transactions must be forced to disk

before commit
• NO-STEAL: Pages of uncommitted transactions cannot be written to

disk

No-force/Steal (least strict)

• NO-FORCE: Pages of committed transactions need not be written to
disk
• STEAL: Pages of uncommitted transactions may be written to disk

• In both cases, need a Write Ahead Log (WAL) to provide atomicity in
face of failures

Write-ahead Log (WAL)

• The Log: append-only file containing log records
• Records every single action of every TXN
• Forces log entries to disk as needed
• After a system crash, use log to recover

• Three types: UNDO, REDO, UNDO-REDO

Policies and Logs

STEAL NO-STEAL

FORCE Undo Log Lab4

NO-FORCE Undo-redo Log Redo Log

Least strict

Most strict

“Undo” Log

• FORCE and STEAL

Undo Logging

• Log records
• <START, T>

• transaction T has begun
• <COMMIT, T>

• T has committed
• <ABORT, T>

• T has aborted
• <T,X,v>

• T has updated element X, and its old value was v
• Idempotent, physical log records

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B UNDO Log

<START, T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT,T>

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B UNDO Log

<START, T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT,T>

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B UNDO Log

<START, T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT,T>

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

We UNDO by setting A= 8, B= 8

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B UNDO Log

<START, T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT,T>

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Nothing to be done COMMIT!

After Crash

Disk A Disk B

8 16

<START, T>
<T,A,8>
<T,B,8>

After Crash

Disk A Disk B

8 16
<START, T>
<T,A,8>
<T,B,8>

Q: Which direction to undo the actions?

After Crash

Disk A Disk B

8 16
<START, T>
<T,A,8>
<T,B,8>

Q: Which direction to undo the actions?

A: In UNDO log, we start at the most recent and go backwards in time

After Crash

Disk A Disk B

8 8
<START, T>
<T,A,8>
<T,B,8>

Q: Which direction to undo the actions?

A: In UNDO log, we start at the most recent and go backwards in time

After Crash

Disk A Disk B

8 8
<START, T>
<T,A,8>
<T,B,8>

Q: Which direction to undo the actions?

A: In UNDO log, we start at the most recent and go backwards in time

• If we see NO Commit statement:
• We UNDO both changes: A=8, B=8 •
• The transaction is atomic, since none of its actions have been executed

• If we see that T has a Commit statement
• We don’t undo anything •
• The transaction is atomic, since both it’s actions have been executed

Recovery Manager

• After system’s crash, run recovery manager
• Decide for each transaction T whether it is completed or not
• <START>…..<COMMIT> ….…. = yes
• <START>…..<ABORT> ….…. = yes
• <START>…..….…. = no

• Undo all modifications by incomplete transactions

Read log from the end;
cases: :

<COMMIT,T> mark T as completed
<ABORT, T> : mark T as completed
<T, X, v>: if T is not completed

then write X=v to disk
else ignore

<START, T>: ignore

Recovery with Undo Log

• Which updates are undone ?
• How far back do we need to read in the log?
• What happens if second crash during recovery?

…
…
<T6, X6, V6>
…
…
<START, T5>
<START, T4>
<T1, X1, v1>
<T4,X4, v3>
<T5,X5, v1>
<COMMIT, T5>
<T3,X1, v1>
<T2,X1, v1>

Recovery with Undo Log

• Which updates are undone ?
• All excep t T5

• How far back do we need to read in the log?
• To the beginning

• What happens if second crash during recovery?
• Idempotent.

…
…
<T6, X6, V6>
…
…
<START, T5>
<START, T4>
<T1, X1, v1>
<T4,X4, v3>
<T5,X5, v1>
<COMMIT, T5>
<T3,X1, v1>
<T2,X1, v1>

Policies and Logs

STEAL NO-STEAL

FORCE Undo Log Lab4

NO-FORCE Undo-redo Log Redo Log

Least strict

Most strict

Recovery with Undo Log

• When must we force pages to disk ?

• RULES: log entry before OUTPUT before COMMIT

Recovery with Undo Log: FORCE Rules

• U1: If T modifies X, then <T, X, v> must be written to disk before
OUTPUT(X)
• U2: If T commits, then OUTPUT(X) must be written to disk before

<COMMIT, T>
• Hence: OUTPUTs are done early, before the transaction commits

REDO

• NO-FORCE and NO-STEAL

• One minor change to the undo log:
• <T,X,v> = T has updated element X, and its new value is v

Example:

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Is this bad?

MPCS 53003

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t = t* 2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t = t* 2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer Pool Disk StateTxn State

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

No-Steal Redo Logging Rules

• R1: If T modifies X, then both <T,X,v> and <COMMIT, T> must be
written to disk before OUTPUT(X)
• Hence: OUTPUTs are done late

Undo/Redo Logging

• Undo logging:
• OUTPUT must be done early
• If <COMMIT, T> is seen, T definitely has written all its data to disk (hence,

don’t need to redo) – inefficient

• Redo logging
• OUTPUT must be done late
• If <COMMIT, T> is not seen, T definitely has not written any of its data to disk

(hence there is not dirty data on disk, no need to undo) – inflexible

• Would like more flexibility on when to OUTPUT: undo/redo logging

