
CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing

DePaul University

• So far we have seen sufficient conditions that allows us to check
whether the schedule is serializable.
• Serial
• Serializable
• Conflict serializable
• View serializable
• Recoverability

• Recoverable
• Avoids cascading deletes

Example1

• T1 R(A) W(A) R(B) W(B)
• T2 R(A) W(A) R(B) W(B)

A Non-serializable Schedule

• T1 R(A) W(A) R(B) W(B)
• T2 R(A) W(A) R(B) W(B)

• But how to ensure serializability during runtime?

• Challenge: The system does not know in advance which transactions
will run and which items they will access.

Scheduler

• The scheduler:
• Module that schedules the transaction’s actions, ensuring serializability

• Two main approaches
• Pessimistic:

• lock-based concurrency control,
• Timestamp-based concurrency control,
• needs deadlock detection

• Optimistic: tracking of read-set/write-set, validation before commit.
• Multi-version: less concurrency overhead for read-only queries

Pessimistic Scheduler

• Simple idea:
• Each database object has a unique lock
• Each transaction must first acquire the lock before reading/writing that DB

object
• If the lock is taken by another transaction, then wait
• The transaction must release the lock(s)

Notation

• Li (A) = transaction Ti acquires lock for element A
• Ui (A) = transaction Ti releases lock for element A

• A lock is a small bookkeeping object associated with a database
object.

A Non-serializable Schedule

• T1 R(A) W(A) R(B) W(B)
• T2 R(A) W(A) R(B) W(B)

A Non-serializable Schedule

• T1: L1(A) R(A) W(A) U1(A) L1(B)
• T2: L2(A)R(A) W(A) U2(A) L2(B) Denied…

• T1: R(B) W(B) U1(B)
• T2: Granted…R(B) W(B)U2(B)

t

Locks ensure a conflict-serializable schedule

• T1: L1(A) R(A) W(A) U1(A) L1(B)
• T2: L2(A)R(A) W(A) U2(A) L2(B) Denied…

• T1: R(B) W(B) U1(B)
• T2: Granted…R(B) W(B)U2(B)

t

Example2

• T1: L1(A) R(A) W(A) U1(A)
• T2: L2(A)R(A) W(A) U2(A) L2(B) R(B)

• T1: L1(B) R(B) W(B) U1(B)
• T2: W(B) U2(B)

Locks did not enforce conflict serializability!!! What’s
wrong?

t

Two-Phase Locking

• The 2PL protocol:
• In every transaction, all lock requests must precede all unlock requests
• This ensures conflict serializability! (will prove this shortly)

• Note: A protocol is a set of rules to be followed by each txn such that
interleaved actions of a transaction are conflict-serializable.

Conflict-serializable with 2PL

• T1: L1(A) L1(B) R(A) W(A) U1(A)
• T2: L2(A)R(A) W(A) L2(B) Denied

• T1: R(B) W(B) U1(B)
• T2: Granted R(B) W(B) U2(A) U2(B)

t

2PL Growing and Shrinking

of locks
held

t

Lock phase Release phase

2PL Growing and Shrinking

• Protocol which ensures conflict-serializable schedules.
• Phase 1: Growing Phase
• transaction may obtain locks
• transaction may not release locks

• Phase 2: Shrinking Phase
• transaction may release locks
• transaction may not obtain locks

Multiple Transactions

T1 T2 T3 T4

• Equivalent to each transaction executing entirely the moment it
enters shrinking phase

Growing
Phase

Shrinking
Phase

Multiple Transactions

T1 T2 T3 T4

• Equivalent to each transaction executing entirely the moment it
enters shrinking phase

Growing
Phase

Shrinking
Phase

Unlocks second
so was perhaps
waiting for T3

Unlocks first
Was not
Waiting
For anyone

Are these schedules in 2PL?

• T1: L(B) W(B) U(B)
• T2: L(A) R(A) U(A) L(B) W(B) U(B)
• T1: L(B) W(B) U(B)
• T2: L(A) L(B) R(A) W(B) U(A) U(B)
• T1: L(B) W(B) U(B)
• T2: L(A) R(A) U(A) L(B) W(B) U(B)
• T1: L(B) W(B) U(B)
• T2: L(A) R(A) L(B) U(A) W(B) U(B)

2PL Growing and Shrinking

• Protocol which ensures conflict-serializable schedules.
• Phase 1: Growing Phase
• transaction may obtain locks
• transaction may not release locks

• Phase 2: Shrinking Phase
• transaction may release locks
• transaction may not obtain locks

• The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.
the point where a transaction acquired its final lock).

Theorem

• 2PL ensures conflict serializability

2PL & Serializability
• Recall: Precedence Graph

T1 T2 T3

read(Q)
write(Q)
read(R)

write(R)
read(S)

T1 T2

T3

R/W(Q)

R/W(R)

22

2PL & Serializability

• Recall: Precedence Graph
T1 T2 T3

read(Q)

write(S)

write(Q)
read(R)

write(R)
read(S)

T1 T2

T3

R/W(Q)

R/W(R)

R/W
(S) Cycle à Non-serializable

23

2PL & Serializability
Relation between Growing & Shrinking phase:

T1G < T1S
T2G < T2S
T3G < T3S

T1
T2

T3

T1 must release locks for other to proceed
T1S < T2G
T2S < T3G
T3S < T1G

T1G < T1S < T2G < T2S < T3G < T3S < T1G

Not Possible under 2PL!

It can be generalized for any set of transactions...

24

The Locking Scheduler

• Task 1: act on behalf of the transaction

• Add lock/unlock requests to transactions
• Examine all READ(A) or WRITE(A) actions
• Add appropriate lock requests
• On COMMIT/ROLLBACK release all locks
• Ensures Strict 2PL!

The Locking Scheduler

• Task 2: -- act on behalf of the system
Execute the locks accordingly
• Lock table: a big, critical data structure in a DBMS !
• When a lock is requested, check the lock table
• Grant, or add the transaction to the database object’s wait list
• When a lock is released, re-activate a transaction from its wait list
• When a transaction aborts, release all its locks
• Check for deadlocks occasionally

Lock Granularity

• Granularity of locking is a tradeoff

• Fine granularity locking (e.g., tuples)

• Coarse grain locking (e.g., tables, predicate locks)

• Very-coarse grained level (database level)

Lock Granularity

• Granularity of locking is a tradeoff

• Fine granularity locking (e.g., tuples)

• Coarse grain locking (e.g., tables, predicate locks)

• Very-coarse grained level (database level)

High concurrency

Low concurrency

High overhead

Low overhead

Multi-granularity Locking

• S = shared lock (for READ)
• Acquired before reading a database object
• Many transactions can hold on to a shared lock at the same time.

• X = exclusive lock (for WRITE)
• Exclusive lock is acquired on a database object before writing the object (in

memory).
• A transaction can hold onto an exclusive lock on a database object only if no

other transaction holds onto an exclusive lock on the same object.
• If a transaction holds an exclusive lock on a database object it can also READ

the object.

X lock is stronger than a S lock

Multi-granularity Locking

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

• Lock Compatibility Matrix

None S X

None

S

X

Example of Schedule with S and X locks

• T1 X(B) W(B) U(B)
• T2 S(A) R(A) X(B) W(B) U(A) U(B)

• S(A) = shared lock on A
• X(A) = exclusive lock on A
• U(A) = unlock of A, or if more precision is needed:
• US(A) = unlock shared lock of A
• UX(A) = unlock exclusive lock of A

Issues with 2PL

• Recoverable schedules and Cascading rollbacks
• Deadlocks

Schedule with Aborted Transactions

• When a transaction aborts, the scheduler must undo its updates
• But some of its updates may have affected other transactions!

• T1 R(V) W(V) Ab
• T2 R(V) W(V) R(Y) W(Y) Co

• Cannot abort T1 because cannot undo T2

Recoverable Schedules

• A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all transactions that have written

elements read by T have already committed

Recoverable Schedules

• A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all transactions that have written

elements read by T have already committed

• T1 R(V) W(V) Ab
• T2 R(V) W(V) R(Y) W(Y) Co
• T1 R(V) W(V) Co
• T2 R(V) W(V) R(Y) W(Y) Co

Non-recoverable!

Recoverable!

Example

• T1 R(X) W(X) Ab
• T2 R(X) W(X) R(Y) W(Y)
• T1 R(Y) W(Y) R(Z) W(Z)
• T2 R(Z) W(Z) R(A) W(A)

Example

• T1 R(X) W(X) Co
• T2 R(X) W(X) R(Y) W(Y) Co
• T1 R(Y) W(Y) R(Z) W(Z) Co
• T2 R(Z) W(Z) R(A) W(A) Co

Recoverable schedule:
If Tj reads a value written by Ti then commit of Tj must be
delayed after the commit of Ti

A schedule must always be recoverable!
But the above does not avoid cascading aborts

Cascading Aborts

• If a transaction T aborts, then we need to abort any other transaction
T’ that has read an element written by T.

• Cascadeless schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that has last written it
has already committed.
• No dirty reads, thus abort or rollback does not cascade.
• All cascadeless schedules are recoverable.

Example

• T1 R(X) W(X) Co
• T2 R(X) W(X) R(Y) W(Y) Co
• T1 R(Y) W(Y) R(Z) W(Z) Co
• T2 R(Z) W(Z) R(A)

W(A) Co

Cascadeless schedule:
If Tj reads a value written by Ti then the read of of Tj is delayed
after the commit of Ti

Does 2PL help with recoverable schedules?

• T1: L1(A) L1(B) R(A) W(A) U1(A)
• T2: L2(A)R(A) W(A) L2(B) Denied

• T1: R(B) W(B) U1(B) Ab
• T2: Granted R(B) W(B) U2(A) U2(B) Co

t

Does 2PL help with recoverable schedules?

• T1: L1(A) R(A) W(A)
• T2: L2(A) Denied…

• T1: L1(B) R(B) W(B) U1(A) U1(B) Rollback
• T2: ….Granted R(A) W(A) L2(B)

• T1:
• T2: R(B) W(B) U2(A) U2(B) Co

t

t

Cascades/Recoverable

• T1 X(A) S(B) W(A)U(A) R(B) U(B) Co
• T2 S(A) R(A)X(A)W(A)U(A)Co

• Is the schedule cascadeless?

• Is the schedule recoverable?

Cascades/Recoverable

• T1 X(A) S(B) W(A)U(A) R(B) U(B) Co
• T2 S(A) R(A)X(A)W(A)U(A) Co

• By delaying the commit of T2 we have made the schedule recoverable
but not cascadeless.

Find which transactions need to be aborted?

• T1 R(B) R(E) W(B)
• T2 W(A) R(B)
• T3 W(C) R(B) R(A) R(D) Ab
• T4 W(D) W(A)
• T5 R(C) W(E) W(C)
• T6 W(E) R(A)

Find which transactions need to be aborted?

• T1 R(B) R(E) W(B)
• T2 W(A) R(B)
• T3 W(C) R(B) R(A) R(D) Ab
• T4 W(D) W(A)
• T5 R(C) W(E) W(C)
• T6 W(E) R(A)

T3, T5 T1 must be rollbacked!

Strict 2PL

• Strict 2PL:
• Like in 2PL, txans much acquire locks before reading or writing database

objects.
• All locks must be acquired before they are released.
• All locks held by a transaction are released when the transaction is

completed; release happens at the time of COMMIT or ROLLBACK

of locks
held

t

Lock phase

Release phase

Summary of Strict 2PL

• Pros:
• Schedule is recoverable

• Schedule avoids cascading aborts

• Cons: deadlocks,

• General issues: implementation, lock modes, granularity,
performance

Deadlocks

• Transaction 1

• xLock(A)

• Do something

• Lock(B)
• (waiting for T2 to unlock B)

• Transaction 2

• xLock(B)
• Do something

• Lock(A)
• (waiting for T1 to unlock A)

Deadlocks

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

Suppose T4 requests lock-S(Z)....

49

Detecting Deadlocks using Wait-for-Graphs

• How do you detect a deadlock?
• Wait-for graph
• Directed edge from Ti to Tj

• If Ti waiting for Tj
T1

T2

T4

T3

50

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

Detecting Deadlocks

• Wait-for graph has a cycle à deadlock

T2, T3, T4 are deadlocked T1

T2
T4

T3•Build wait-for graph, check for cycle

•How often?
- Tunable

IF expect many deadlocks or many transactions
involved THEN

run often to reduce aborts
ELSE run less often to reduce overhead

51

Recovering from Deadlocks

•Rollback transaction(s), but which ones?
• Rollback the oldest txn, rollback the cheapest txn
• Cons of oldest txn policy: Aborting old txns may cause

a lot of computational investment to be thrown away.
• Was it almost done?
• How much will it have to redo?
• Will it cause other rollbacks?
• Is a partial rollback possible?

• Cons of cheapest txn: Avoid starvation
• Ensure same transaction not always chosen to break

deadlock

52

Deadlock Detection via Timeout

• Let transactions block on a lock request only for a limited time.
• After timeout, assume a deadlock has occurred and abort T.

• Policy is independent of transaction properties.

Preclaiming 2 Phase Locking Protocol

• All needed locks are declared at the beginning of the transaction.
• Advantage: No deadlocks! But rollbacks are cascading.
• Is it practical?

of locks
held

Lo
ck

 p
ha

se

Release phase

Example

• T1 R(V) R(Z) R(Y)
• T2 R(Y) W(V)
• T3 W(V) W(Z)

• Can it be achieved via 2PL?
• Can it be achieved via strict 2PL?

First Approximation

• T1 S(V) R(V) S(Z)R(Z) S(Y)R(Y)
• T2 S(Y)R(Y) X(V)W(V)
• T3 X(V)W(V) X(Z) W(Z)

• Introduce shared locks for read statements and exclusive locks for write
statements.

Example

• T1 S(V) R(V) S(Z)R(Z) S(Y)R(Y)
• T2 S(Y)R(Y) X(V)W(V)
• T3 X(V)W(V) X(Z) W(Z)

• Can schedule be achieved via 2PL? No. S(V) and X(V) conflict.
• Can schedule be achieved via strict 2PL? No. S(V) has to be held on till

commit. Still conflicts with X(V)

First Approximation with unlocking?

• T1 S(V) R(V) U(V) S(Z)R(Z) S(Y)R(Y)
• T2 S(Y)R(Y) X(V)W(V)
• T3 X(V)W(V) X(Z) W(Z)

First Approximation with unlocking?

• T1 S(VZY) R(V) U(V) R(Z) R(Y)
• T2 S(Y)R(Y) X(V)W(V)
• T3 X(V)W(V) X(Z) W(Z)

First Approximation with unlocking?

• T1 S(VZY) R(V) U(V) R(Z) U(Z) R(Y)
• T2 S(Y)R(Y) X(V)W(V)
• T3 X(V)W(V) X(Z) U(V) W(Z)

First Approximation with unlocking?

• T1 S(VZY) R(V) U(V) R(Z) U(Z) R(Y) U(Y)
• T2 S(Y)R(Y) X(V)W(V) U(VY)
• T3 X(V)W(V) X(Z) U(V) W(Z) U(Z)

2PL serializable!

What about preclaiming 2PL?

• T1 S(VZY) R(V) U(V) R(Z) U(Z) R(Y) U(Y)
• T2 S(Y)R(Y) X(V)W(V) U(VY)
• T3 X(V)W(V) X(Z) U(V) W(Z) U(Z)

2PL serializable!

Lock Performance

• Blocked txns or aborted txns
• Blocked txns lead to other txns waiting
• Aborted txns waste work already done.

Through
put

of active transactions

What do real DBs do?

• Perfect isolation so far but do real DBs allow weaker consistency

Isolation Levels

• Some degree of inconsistency may be acceptable for specific
applications to gain increased concurrency and performance

• E.g. accept inconsistent read anomaly and be rewarded with
improved concurrency. Relaxed inconsistency guarantees can lead to
increased throughput.

SQL Directives for managing transactions

66

DBMS

Data

. . .
Weaker “Isolation Levels”

Read Uncommitted

Read Committed

Repeatable Read

¯ Overhead ­ Concurrency

¯ Consistency Guarantees

Strongest “Isolation
Levels”

Serializable order

Isolation Levels in SQL

• “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
• “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
• “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
• Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Read uncommitted

• A transaction may perform dirty reads

68

concurrent with …

Update Student Set GPA = (1.1) * GPA Where sizeHS > 2500

Select GPA from Student Where sizeHS > 2500

Set Transaction Isolation Level Read Uncommitted;

Select Avg(GPA) From Student;

Read committed

• A transaction will not perform dirty reads
• Only reads commited values of other transactions

Still does not guarantee global serializability

69

concurrent with …

Update Student Set GPA = (1.1) * GPA Where sizeHS > 2500

Set Transaction Isolation Level Read Committed;

Select Avg(GPA) From Student;

Select Max(GPA) From Student;

Select GPA From Student Where sizeHS > 2500

Repeatable read

• A transaction will not perform dirty reads
• An attrubute read multiple times cannot change value

Still does not guarantee global serializability

70

concurrent with …

Update Student Set GPA = (1.1) * GPA;
Update Student Set sizeHS = 1500 Where sID = 123;

Set Transaction Isolation Level Repeatable Read;
Select Avg(GPA) From Student;
Select Avg(GPA) From Student;
Select Avg(sizeHS) From Student;

Repeatable read-non serializable

• An item read multiple times cannot change value
But a relation can change: due to unlocked tuples that are

inserted/or locked tuples that are deleted

71

concurrent with …
Insert Into Student [100 new tuples]

Set Transaction Isolation Level Repeatable Read;

Select Avg(GPA) From Student;

Select Max(GPA) From Student;

With locking

• T1 locks all rows
• T2 locks the new rows
• T2 releases its lock
• T2 reads new row too!

• Both transactions properly follow 2PL protocol!
• Nevertheless T1 observed an effect caused by T2.

• Isolation violated!
• Cause of the problem: T1 can only lock existing rows!

Phantom Problem

• A “phantom” is a tuple that is invisible during part of a transaction
execution but not invisible during the entire execution

• In our example:
• T1: reads
• T2: inserts
• T1: re-reads: a new tuple appears !

Phantom Problem

• In a static database:
• Conflict serializability implies serializability

• In a dynamic database, this may fail due to phantoms

• Strict 2PL guarantees conflict serializability, but not serializability

Dealing with Phantoms

• Lock the entire table, or
• Lock the index entry for ‘blue’
• If index is available

• Or use predicate locks
• A lock on an arbitrary predicate

• Dealing with Phantoms is Expensive!

Isolation LEVELS

76

• Per transaction
• “In the eye of the beholder”
•Affect applies to read statements

DBMS

Data

. . .
My transaction is
Repeatable Read

My transaction is
Read Uncommitted

Isolation Level: Dirty Reads Variation of 2PL

• “Long duration” WRITE locks
• Strict 2PL

• No READ locks
• Read-only transactions are never delayed

• Possible problems:
• dirty and inconsistent reads

Isolation Level: Read Committed Variation of
2PL
• “Long duration” WRITE locks
• Strict 2PL

• “Short duration” READ locks
• Only acquire lock while reading (not 2PL)

• Unrepeatable reads
• When reading same element twice, may get two different values

Isolation Level: Repeatable Read

• “Long duration” WRITE locks
• Strict 2PL

• “Long duration” READ locks
• Strict 2PL

• This is not serializable yet !!!
• Why? Phantom

Isolation Level Serializable

• “Long duration” WRITE locks
• Strict 2PL

• “Long duration” READ locks
• Strict 2PL

• Predicate locking
• To deal with phantoms

Transactions-summary

• Serializable
• Strongest isolation level
• SQL Default

• Read Uncommitted
• A data item is dirty if it is written by an uncommitted transaction.
• Problem of reading dirty data written by another uncommitted transaction: what if that

transaction eventually aborts?
• Read Committed

• Cannot read dirty data written by other uncommitted transactions.
• But read-committed is still not necessarily serializable

• Repeatable Read
• If a tuple is read once, then the same tuple must be retrieved again if query is repeated.
• Still not serilizable; may see phantom tuples—tuples inserted by other concurrent

transactions

81

SQL-92 Isolation Level and Consistency
Gurantees
Isolation level Dirty read Non-repeatable read Phantom rows

Read uncommitted possible possible possible

Read committed Not possible possible possible

Repeatable read Not possible Not possible possible

Serializable Not possible Not possible Not possible

Different databases support different isolation level.

READ-ONLY Transactions

• Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price FROM Product WHERE price <= 0.99
DELETE FROM Product WHERE price <=0.99
COMMIT

• Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*) FROM Product
SELECT count(*) FROM SmallProduct
COMMIT

• Always check documentation!
• DB2: Strict 2PL
• SQL Server:
• Strict 2PL for standard 4 levels of isolation
• Multiversion concurrency control for snapshot isolation

• PostgreSQL: Snapshot isolation; recently: seralizable Snapshot
isolation (!)
• Oracle: Snapshot isolation

Lab 3

• NO STEAL / FORCE buffer management policy
• you shouldn’t evict dirty(updated) pages from the buffer pool if they are

locked by an uncommitted transaction. (this is NO STEAL)
• on transaction commit, you should force dirty pages to disk. (e.g., write the

pages out) (this is FORCE)

• Locking at page level
• you acquire and release locks in BufferPool.getPage(), instead of adding calls

to each of your operators
• Might have to change previous implementations to access pages using

BufferPool.getPage()

Lab 3

• You need to implement shared and exclusive locks
• Before read, it must have a shared lock
• Before write, it must have an exclusive lock
• Multiple transactions can have a shared lock
• Only one transaction may have an exclusive lock on an object
• If transaction t is the only transaction holding a shared lock on an object o, t may

upgrade its lock on o to an exclusive lock
• Logic provided in comments

• You need to implement strict two-phase locking
• transactions should acquire the appropriate type of lock on any object before

accessing that object
• transaction shouldn’t release any locks until after the transaction commits.

Lab 3

• A LockManager bare bones class is provided which you will need to
interface with BufferManager
• The class will hold data structures to keep track of which locks each

transaction holds and that check to see if a lock should be granted to a
transaction when it is requested.

• Read about Synchronization in Java, and check the use of
synchronized keyword in appropriate places in LockManager
• You will have to also throw appropriate exceptions like

TransactionAbortedException

Lab 3

• Handling deadlocks
• implement a simple timeout policy that aborts a transaction if it has not

completed after a given period of time
• implement a cycle-detection in a dependency graph data structure, if cycle

exists when granting a new lock abort something.

• Design Choices:
• Locking Granularity: page-level (the tests also assume page-level)
• Deadlock Detection: timeout vs dependency graphs
• Deadlock Resolution: aborting yourself vs aborting others
• Read the spec carefully for more details about various methods and edge

cases

