
CSC553 Advanced Database
Concepts

Tanu Malik

School of Computing

DePaul University

Transactions

Motivated by two independent requirements

• Concurrent database access

• Resilience to system failures

2

R1: Concurrent database access

3

DBMS

More software

Data

R2: Resilience to system failures

4

DBMS

More software

Data

Example Transaction

• Withdraw $100 from an ATM machine

• ATM Transaction
balance ← read(account)

balance ← balance – 100

write(account, balance)

• The account is properly updated to reflect the new balance.

5

Lost Update Transaction

• Concurrent access of an account

• Two clients accessing the same account at the same time.

balance ← read(account)

balance ← balance – withdraw (100)

write(account, balance)

balance ← read(account)

balance ← balance – withdraw (200)

write(account, balance)

Account
Type

Amount

Checking 1000

Before

Account
Type

Amount

Checking 700

After

Lost Update Transaction

• Concurrent access of an account
• Two clients accessing the same account at the same time.

balance ← read(account)
balance ← read(account)

balance ← balance – withdraw (100)
balance ← balance – withdraw (200)

write(account, balance)

write(account, balance)

Account
Type

Amount

Checking 1000

Before

1000
1000

900

800

900

800

Money is created!!!

Dirty Read Transaction

• Reading uncommitted data of transactions.

balance ← read(account)

balance ← balance – withdraw (100)

write(account, balance)

balance ← read(account)

balance ← balance – withdraw (200)

write(account, balance)

Account
Type

Amount

Checking 1000

Before

Account
Type

Amount

Checking 700

After

Dirty Read Transaction

• Concurrent access of an account
• Two clients accessing the same account at the same time.

balance ← read(account)

balance ← balance – withdraw (100)

write(account, balance)
balance ← read(account)

balance ← balance – withdraw (200)

abort

write(account, balance)

Account
Type

Amount

Checking 1000

Before

1000

900

900
900

700

700

Money is not dispensed but deducted!!

Inconsistent Read Transaction

• Concurrent access of accounts

• Two clients accessing the same accounts at the same time.

balance ← read(checking_account)
balance ← balance – withdraw (100)
write(checking_account, balance)

balance ← read(sum(accounts))

balance ← read(savings_account)
balance ← balance + withdraw (100)
write(savings_account, balance)

Before sum= 2500

Incorrect total sum is reported

Thinks before
transfering 100

Account
Type

Amount

Checking 1000

Savings 1500

inBetween sum= 2400

Account
Type

Amount

Checking 900

Savings 1500

After sum= 2500

Account
Type

Amount

Checking 900

Savings 1600

Inconsistent Read Transaction

• Reconsider the transfer from checking to saving account

• Transaction 1

Update Accounts

Set balance = balance – 500

Where customer = 1904 and account_type = ‘Checking’

Update Accounts

Set balance = balance + 500

Where customer = 1904 and account_type = ‘Saving’

• Transaction 2

Select sum(balance)

From Accounts

Where customer = 1904

Transaction 2
sees a

temporary,
inconsistent

database state

Interrupted Transaction

• Money transfer from Checking to Savings

Step1: subtract money from checkings account
Step2: add money to savings

1. checking_balance ← read(checking_account)

2. checking_ balance ← checking_ balance – transfer (500)

3. write(checking_account, checking_balance)

4. savings_balance ← read(savings_account)

5. savings_ balance ← savings_ balance + transfer (500)

6. write(savings_account, savings_balance)

Account
Type

Amount

Checking 1000

Savings 1500

Before

Account
Type

Amount

Checking 500

Savings 2000

After

Interrupted Transaction

• Money transfer from Checking to Savings

Step1: subtract money from checkings account
Step2: add money to savings

1. checking_balance ← read(checking_account)
2. checking_ balance ← checking_ balance – transfer (500)
3. write(checking_account, checking_balance)
4. savings_balance ← read(savings_account)
5. savings_ balance ← savings_ balance + transfer (500)
6. write(savings_account, savings_balance)

• System crash (power outage, network failure)

prevents the final write to happen. Money is lost!

Account
Type

Amount

Checking 1000

Savings 1500

Before

Account
Type

Amount

Checking 500

Savings 2000

After

Unrepeatable Read Transaction

• Concurrent access of accounts
• Two clients accessing the same accounts at the same time.

balance ← read(sum(accounts))
balance ← read(checking_account)
balance ← balance – withdraw (100)
write(checking_account, balance)

balance ← read(sum(accounts))

Before sum= 2500

Different sum of monies during a txn!!! Money was lost during a transaction

Account
Type

Amount

Checking 1000

Savings 1500

After sum= 2400

Account
Type

Amount

Checking 900

Savings 1500

Unrepeatable Read Transaction

• Reconsider the transfer from checking to saving
account

• Transaction 1

Update Accounts

Set balance = balance – 500

Where customer = 1904 and account_type =
‘Checking’

• Transaction 2

Select sum(balance)

From Accounts

Where customer = 1904

Select sum(balance)

From Accounts

Where customer = 1904

Transaction 2
reads

two different
balances

Summary

• Lost Update Anomaly
• The effect of one transaction are lost due to an uncontrolled overwrite performed by

a second transaction

• Inconsistent Read
• A transaction reads the partial result of another transaction

• Dirty Reads
• A transaction reads partial information of a transaction that potentially aborts.

• Interrupted Transactions
• System state may not reflect the set of user actions.

• Unrepeatable Read
• A transaction reads a value which is afterwards changed by another transaction

(before the former transaction is finished). So, the first transaction operates on stale
data.

Solution for both concurrency and failures:
Transactions

• A transaction is a sequence of one or more SQL
operations treated as a unit

§ Transactions appear to run in isolation

§ If the system fails, each transaction’s changes are

reflected either entirely or not at all

17

Transactions

• Transaction begins with a “Begin Transaction” statement
• In Oracle a transaction implicitly begins with a Begin statement

• On “commit” transaction ends and new one begins
• Current transaction ends on session termination
• “Autocommit” turns each statement into transaction

• CREATE TABLE statements are autocommitted

18

Transaction resilience to system failures

• Transaction Rollback (= Abort)
• Undoes partial effects of transaction

• Can be system- or client-initiated

19

Begin Transaction;
<get input from user>
SQL commands based on input
<confirm results with user>
If ans=‘ok’ Then Commit; Else Rollback;

Each transaction is

“all-or-nothing,”

never left half done

Transaction: Terms

• Begin transaction: A transaction that is in progress/active.

• Commit: A transaction that completes its execution successfully.

• Abort: A transaction that does not complete its execution
successfully.

• Rollback: Changes caused by an aborted transaction are undone.

ØA transaction that is successfully committed cannot undo its effects
by aborting it.

Transaction Schedular must satisfy ACID
Properties

Properties Meaning

A Atomicity all operations are reflected in the DB or none (all-or-nothing propert)y

C Consistency an isolated transaction will preserve a consistent DB state

I Isolation concurrent transactions “appear” to act in isolation

D Durability commits are persistent and are reflected even if there are system failures

Transactions: Atomicity (All-or-nothing)

22

WRITE(enrollment)

READ(enrollment, cName)

Commit

Begin Transaction

<enrollment gets updated here>

WRITE(enrollment)

READ(enrollment, cName)

<enrollment gets updated here>

Transactions: Isolation

• Allow concurrent database access (i.e. operations may be interleaved)
but execution must be equivalent to some sequential (serial) order of
all transactions.

• Avoid Lost update, inconsistent reads, and repeatable read

23

Transactions: Consistency

X Y
5 5

6 6

24

Update Test set x = x*2
Update Test set y = y*2

Create Table Test
(x int,
y int ,
check (y = x)

)

Transactions: Consistency

25

Update Test set y = x+y;
Update Test set x = x+y;

Create Table Test
(x int,
y int ,
check (y >= x)

)
X Y
5 5

6 6

Transactions: Durability (persistence)

26

WRITE(enrollment)

READ(enrollment, cName)

Commit

Begin Transaction

enrollment gets updated here

Transactions: Simplified Model

• Transactions is a list of actions on database object O.

• The actions are:

• Reads: R(O): reads object O and transfers its value to a variable O in a buffer in main memory
belonging to the transaction that executed the read.

• Writes: W(O): transfers the value of variable O in the main memory buffer of the transaction
that executed the write to the data item O in the database.

ØWrites are not immediately reflected on disk.

• Transactions end with Commit or Abort.

• Sometimes omitted if not relevant.

• Example Txn: T1: R(O), R(P), W(O), W(M), Commit

Scheduler

• The scheduler decides the execution order of concurrent database
access

Client1 Client2 Client3

Scheduler

Access and Storage Layer

3
2

1

2
1

3
2

1

1

1
2

1
2

Schedules

• A schedule is a list of actions from a set of transactions.
• A plan how to execute transactions.

• In a schedule, the order in which 2 actions of a transaction T appear
must be the same order as they appear in the description of T.

Transaction Schedule

• T1: R(V) W(V)

• T2: R(Y) W(Y)

• S1: R(V) R(Y) W(Y) W(V)

• S2: W(V) R(Y) W(Y) R(V)

Transaction Schedule

• T1: R(V) W(V)

• T2: R(Y) W(Y)

• S1: R(V) R(Y) W(Y) W(V)

• S2: W(V) R(Y) W(Y) R(V)

Serial Schedule

• A schedule is serial if the actions of the different transactions are not
interleaved; they are executed one after the other.

• T1: R(V) W(V)

• T2: R(Y) W(Y)

• S1: R(Y) W(Y) R(V) W(V)

Serializable Schedule

• A schedule is serializable if its effect on the database is the same as
that of some serial schedule.

• We usually only want to allow serializable schedules.
• Why?

Serializable Schedule

• A schedule is serializable if its effect on the database is the same as
that of some serial schedule.

• We usually only want to allow serializable schedules.
• Why?

• Then the transactions appear to be in isolation.

ØNo concurrency anomalies

Conflicts

• Two actions in a schedule conflict if they:
• Are from different transactions,
• Involve the same data item, and
• One of the actions is a write.

• Example
T1: R(Y) W(Y) W(X)
T2: R(Y) W(Z)

• Data items: X, Y, Z
• Y involves write.

Conflicts

• Two actions in a schedule conflict if they:
• Are from different transactions,

• Involve the same data item, and

• One of the actions is a write.

• Example: Which actions conflict?
T1: R(Y) W(Y) W(X) Co/Ab

T2: R(Y) W(Z)

Conflicts

• Two actions in a schedule conflict if they:
• Are from different transactions,

• Involve the same data item, and

• One of the actions is a write.

• Example: Which actions conflict?
T1: R(Y) W(Y) W(X) Co/Ab

T2: R(Y) W(Z)

Conflicts

• Two actions in a schedule conflict if they:
• Are from different transactions,

• Involve the same data item, and

• One of the actions is a write.

• Example: Which actions conflict?
T1: R(Y) W(Y) W(X) Co/Ab

T2: R(Y) W(Z)

Types of Conflicts

• write read (WR)

• read write (RW)

• write write (WW)

ØConflicts cause a schedule to be not serializable.

WR conflict

• There is WR conflict between T1 and T2 if there is an item Y which T1
writes and afterwards T2 reads Y.

• If T1 is not committed, then this is a dirty read by T2

• Example: Find all WR conflicts in the following schedule

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

WR conflict

• There is WR conflict between T1 and T2 if there is an item Y which T1
writes and afterwards T2 reads Y.

• If T1 is not committed, then this is a dirty read by T2

• Example: Find all WR conflicts in the following schedule

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

RW Conflict

• There is RW conflict between T1 and T2 if there is an item Y which T1
reads and afterwards T2 writes Y.

• This read becomes an unrepeatable read.

• Example: Find all RW conflicts in the following schedule

• T1 W(Y)

• T2 R(V) R(Y) W(Z) R(V)

• T3 W(V)

RW Conflict

• There is RW conflict between T1 and T2 if there is an item Y which T1
reads and afterwards T2 writes Y.

• This read becomes an unrepeatable read.

• Example: Find all RW conflicts in the following schedule

• T1 W(Y)

• T2 R(V) R(Y) W(Z) R(V)

• T3 W(V)

WW Conflict

• There is WW conflict between T1 and T2 if there is an item Y which T1
writes and afterwards T2 writes Y.

• This is a lost update problem as write becomes overwritten

• Example: Find all WW conflicts in the following schedule

• T1 W(Y)

• T2 W(V) R(Z) W(Y) W(Z)

• T3 W(V)

WW Conflict

• There is WW conflict between T1 and T2 if there is an item Y which T1
writes and afterwards T2 writes Y.

• This is a lost update problem as write becomes overwritten

• Example: Find all WW conflicts in the following schedule

• T1 W(Y)

• T2 W(V) R(Z) W(Y) W(Z)

• T3 W(V)

Swapping Actions

• We can swap actions (of different transactions) without changing the outcome if the actions are
non-conflicting.

• T1 R(Y)
• T2 R(V) R(Y) W(Y)

• Swap Reads of same item
• T1 R(Y)
• T2 R(V) R(Y) W(Y)

• Swap Reads of of different item
• T1 R(Y)
• T2 R(V) R(Y) W(Y)

Conflict Equivalent Schedules--Definition

• Two schedules are conflict equivalent if they can be transformed into
each other by a sequence of swaps of non-conflicting, adjacent
actions.

ØIn other words, the types and number of conflicts in the two
schedules are the same.

Example: Conflict-Equivalent Schedules

• T1: W(V) R(V) W(V)

• T2: R(V)

• T1: W(V) R(V) W(V)

• T2: R(V)

• T1: W(V) R(V) W(V)

• T2: R(V)

S

S

S

Example: Conflict-Equivalent Schedules

• T1: W(V) R(V) W(V)

• T2: R(V)

• T1: W(V) R(V) W(V)

• T2: R(V)

• T1: W(V) R(V) W(V)

• T2: R(V)

S

S

S

Conflict Serializable Schedules

• A schedule is conflict-serializable if it is conflict-equivalent to some
serial schedule.

Ø Conflict-serializable schedules are serializable (but not necessarily
vice-versa)

Example: Conflict Serializable

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

Example: Conflict Serializable

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

Checking Conflict Serializability

• Given a schedule create precedence graph:
• Graph has a node for each transaction

• There is an edge from T1 to T2 if there is a conflicting action between T1 and T2
in which T1 occurs first.

• No need to repeat edges if multiple conflicting actions between T1 and T2 in

which T1 occurs first.

Example: Checking Conflict Serializability

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

Example: Conflict Serializable

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

Example: Checking Conflict Serializability

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

T1 T2

T1 T2

T1 T2

T3

Checking Conflict Serializability

• A schedule is conflict serializable if and only if there is no cycle in the
precedence graph

Example: Checking Conflict Serializability

• T1 W(V) W(V)

• T2 R(V)

• T1 R(V) W(V)

• T2 R(V)

• T1 W(Y)

• T2 R(V) R(Y) W(Z)

• T3 W(V)

T1 T2

T1 T2

T1 T2

T3

CZ

CZ

Checking Conflict Serializability

• If the precedence graph has no cycle, then an equivalent serial schedule is obtained by
the topological sort of the precedence graph

• T1 W(Y)
• T2 R(V) R(Y) W(Z)
• T3 W(V)

There is an edge from T1 to T2 therefore T1 must come before T2.
There is an edge from T2 to T3 therefore T2 must come before T3.
Equivalent T3 must follow T2 which must follow T1
• T1 W(Y)
• T2 R(V) R(Y) W(Z)
• T3 W(V)

T1 T2

T3

Example

• Is the following schedule conflict serializable?

• T1 R(V) W(V)

• T2 W(V)

• T3 W(V)

Example

• Is the following schedule conflict serializable?

• T1 R(V) W(V)
• T2 W(V)
• T3 W(V)

• Not conflict serializable!
• However, the schedule is view-serializable: T1, T2, T3!
• The writes of T1 and T2 are blind writes.

T1 T2

T3

Example

• Is the following schedule conflict serializable?

• T1 R(V) R(Z) R(Y)

• T2 R(Y) W(V)

• T3 W(V) W(Z)

Example

• Is the following schedule conflict serializable?

• T1 R(V) R(Z) R(Y)

• T2 R(Y) W(V)

• T3 W(V) W(Z)

• T1 R(V) R(Z) R(Y)

• T2 R(Y) W(V)

• T3 W(V) W(Z)

T1 T2

T3

Example

• T1 W(B) R(D)
• T2 R(B) W(C) R(A)
• T3 W(B) R(C) W(C)

• T1 → T2
• T1 → T3
• T2 → T1
• T2 → T3
• T3 → T1
• T3 → T2

Example

• T1 W(B) R(D)
• T2 R(B) W(C) R(A)
• T3 W(B) R(C) W(C)

• T1 → T2
• T1 → T3
• T2 → T1
• T2 → T3
• T3 → T1
• T3 → T2

Example

• T1 R(D) W(B)
• T2 R(C)
• T3 W(B) R(A) W(C) W(A) R(C)

• T1 → T2
• T1 → T3
• T2 → T1
• T2 → T3
• T3 → T1
• T3 → T2

Schedule with Aborted Transactions

• When a transaction aborts, the scheduler must undo its updates

• But some of its updates may have affected other transactions!

• T1 R(V) W(V) Ab

• T2 R(V) W(V) R(Y) W(Y) Co

• Cannot abort T1 because cannot undo T2

Recoverable Schedules

• A schedule is recoverable if:
• It is conflict-serializable, and

• Whenever a transaction T commits, all transactions that have written
elements read by T have already committed

Recoverable Schedules

• A schedule is recoverable if:
• It is conflict-serializable, and

• Whenever a transaction T commits, all transactions that have written
elements read by T have already committed

• T1 R(V) W(V) Ab

• T2 R(V) W(V) R(Y) W(Y) Co

• T1 R(V) W(V) Co

• T2 R(V) W(V) R(Y) W(Y) Co

Non-recoverable!

Recoverable!

Example

• T1 R(X) W(X) Ab

• T2 R(X) W(X) R(Y) W(Y)

• T1 R(Y) W(Y) R(Z) W(Z)

• T2 R(Z) W(Z) R(A) W(A)

Cascading Aborts

• If a transaction T aborts, then we need to abort any other transaction
T’ that has read an element written by T.

• A schedule avoids cascading aborts if whenever a transaction reads
an element, the transaction that has last written it has already
committed.

Example

• T1 R(X) W(X) Co

• T2 R(X) W(X) R(Y) W(Y) Co

• T1 R(Y) W(Y) R(Z) W(Z) Co

• T2 R(Z) W(Z) R(A)
W(A)

Serializability and Recoverability

• Serializability
• Serial

• Serializable

• Conflict serializable

• Conflict serializable is serializable, but not vice-versa

• Recoverability
• Recoverable

• Avoids cascading deletes

Scheduler

• The scheduler:
• Module that schedules the transaction’s actions, ensuring serializability

• Two main approaches
• Pessimistic: locks

• Optimistic: timestamps, multi-version, validation

Concurrency Control

• A database must provide a mechanism that will ensure that all
possible schedules are
• either conflict or view serializable, and

• are recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time
generates serial schedules, but provides a poor degree of concurrency
• Are serial schedules recoverable/cascadeless?

• Testing a schedule for serializability after it has executed is a little too
late!

• Need conc. control protocols that assure serializability

Weak Levels of Consistency

• Some applications are willing to live with weak levels of consistency,
allowing schedules that are not serializable
• E.g. a read-only transaction that wants to get an approximate total balance of

all accounts

• E.g. database statistics computed for query optimization can be approximate.

• Such transactions need not be serializable with respect to other transactions

• Tradeoff accuracy for performance

Insertions

Problem	1:	
B+	tree	insertion	and	deletion

• Now	delete	all	nodes	in	the	following	order:
57,	3,	99,	29,	17,	25,	95,	8,	78,	92,	69,	97,	91

Deletions

Deletions

Deletions	(continued	for	3)

Deletions

Deletions

Deletions

