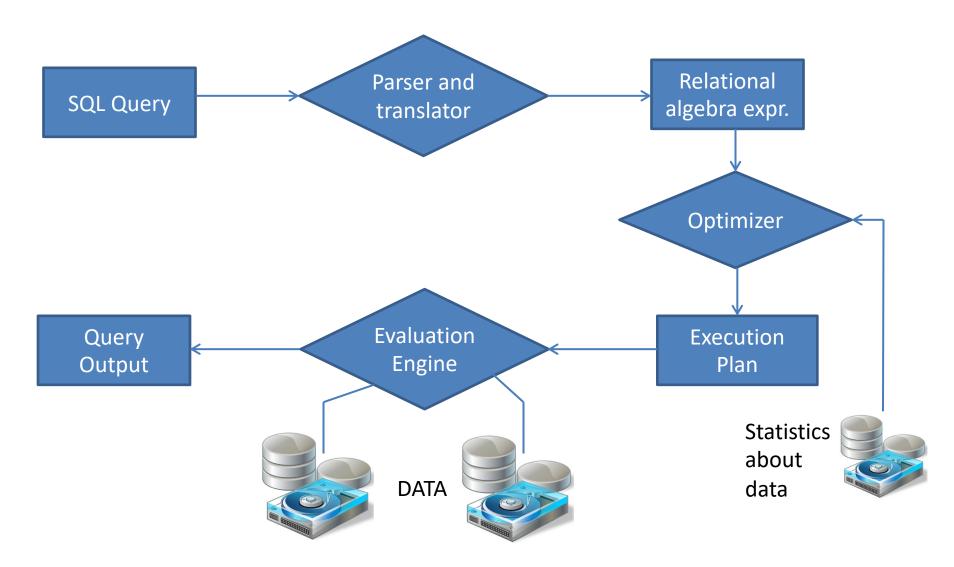
CSC 553 Advanced Database Concepts Lecture 6

Alexander Rasin College of CDM, DePaul University May 2nd, 2022

Query Processing Steps



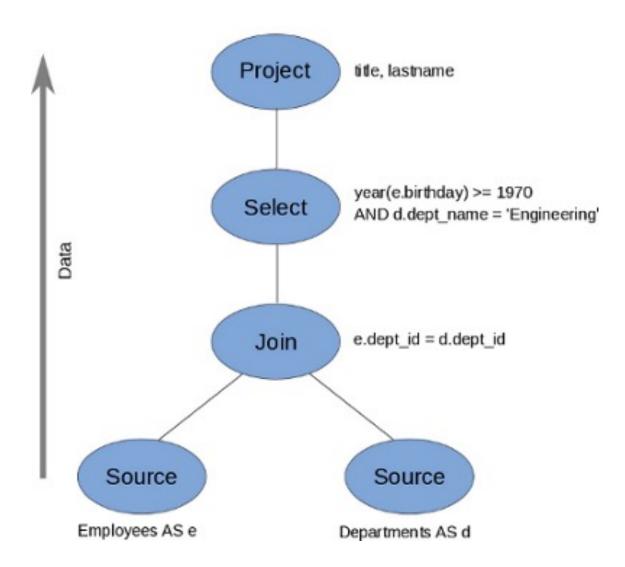
Optimization Fundamentals

- Relational algebra expressions can be substituted for other equivalent expressions
 - E.g., $\sigma_{salary<75000}(\pi_{salary}(instructor))$ is equivalent to $\pi_{salary}(\sigma_{salary<75000}(instructor))$
- Each relational algebra operation (such as $\sigma_{salary<75000}$) can be evaluated using several different algorithms
 - Therefore, a full relational-algebra expression can be evaluated in many ways

Query Optimization Options

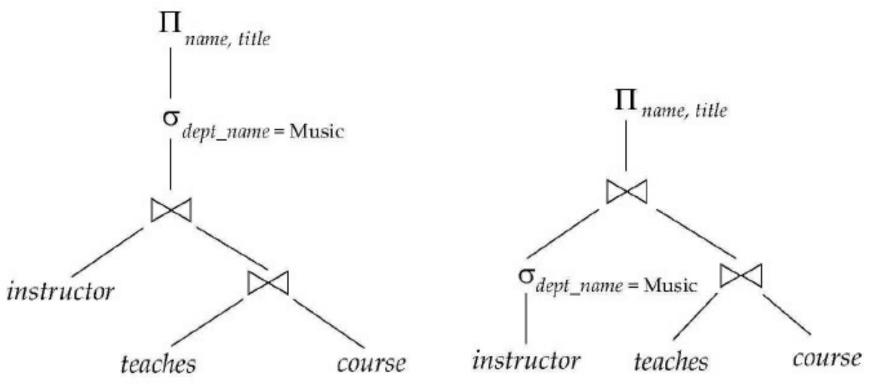
- Consider the relational algebra operator such as $\sigma_{\text{salary}<75000}$ (instructors) and the evaluation options
 - Use an index on salary (if any) to find instructors
 who make less than 75000
 - Perform a complete relation scan and discard instructors with salary ≥ 75000
- Annotated expression specifying the evaluation strategy is called <u>evaluation-plan</u>

Query Plans



The Intuition

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation



 Conjunctive selection operations can be deconstructed into a sequence of individual selections

 $-\sigma_{\text{cond1 and cond2}}(E) = \sigma_{\text{cond1}}(\sigma_{\text{cond2}}(E))$

Selection operations are commutative

 $-\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(\mathsf{E})) = \sigma_{\text{cond2}}(\sigma_{\text{cond1}}(\mathsf{E}))$

- Only the last in a sequence of projection operations is needed, the others can be omitted
 - $\prod_{L1} (\prod_{L2} (\dots (\prod_{Ln} (E)))) = \prod_{L1} (E)$
- Selections can be combined with Cartesian products and joins

$$-\sigma_{\text{cond1}}(\mathsf{E}_1 \mathsf{X} \mathsf{E}_2) = \mathsf{E}_1 \bowtie_{\text{cond1}} \mathsf{E}_2$$

$$-\sigma_{\text{cond1}}(\mathsf{E}_1 \Join_{\text{cond2}} \mathsf{E}_2) = \mathsf{E}_1 \bowtie_{\text{cond1 and cond2}} \mathsf{E}_2$$

• Joins are commutative

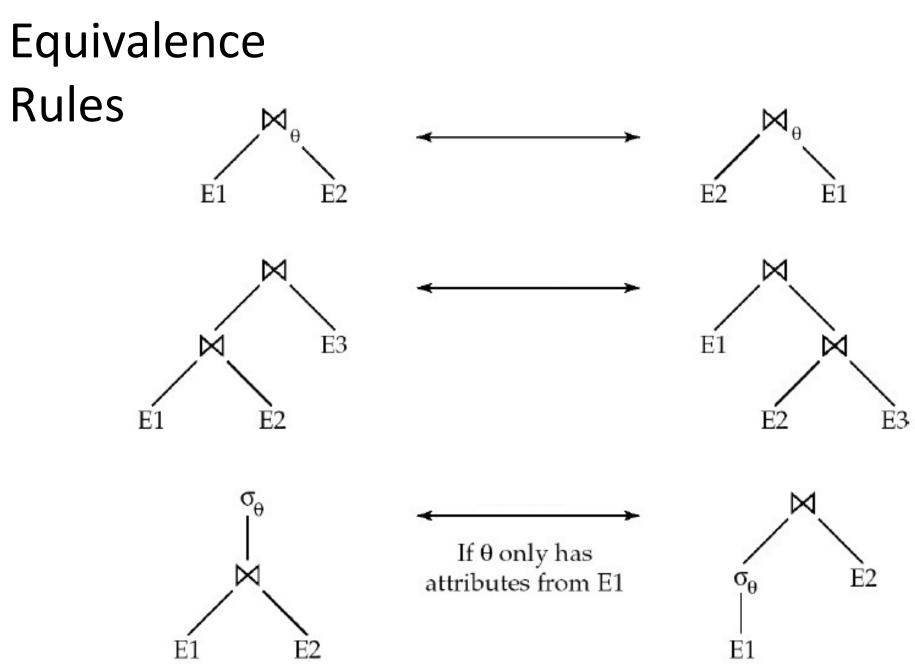
 $-E_1 \Join_{cond1} E_2 = E_2 \bowtie_{cond1} E_1$

• Natural joins are associative

 $-(\mathsf{E}_1 \bowtie \mathsf{E}_2) \bowtie \mathsf{E}_3 = \mathsf{E}_1 \bowtie (\mathsf{E}_2 \bowtie \mathsf{E}_3)$

- (E1 join E2) join E3 = E1 join (E2 join E3)
- Joins are associative with a condition

 $-(E_1 \bowtie_{cond1} E_2) \bowtie_{cond2 \text{ and } cond3} E_3 = E_1 \bowtie_{cond1 \text{ and } cond3} (E_2 \bowtie_{cond2} E_3)$ where cond_2 involves attributes from only E2/E3



- Set operations union and intersection are commutative
 - $-E_1 U E_2 = E_2 U E_1$
 - $\mathsf{E}_1 \cap \mathsf{E}_2 = \mathsf{E}_2 \cap \mathsf{E}_1$
 - Set difference is not commutative
- Set union and intersection are associative

$$-(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

 $-(\mathsf{E}_1 \cap \mathsf{E}_2) \cap \mathsf{E}_3 = \mathsf{E}_1 \cap (\mathsf{E}_2 \cap \mathsf{E}_3)$

 Selection operation distributes over U and ∩ and –

$$-\sigma_{\text{cond}}(\mathsf{E}_1 - \mathsf{E}_2) = \sigma_{\text{cond}}(\mathsf{E}_1) - \sigma_{\text{cond}}(\mathsf{E}_2)$$

– Similar for U and \cap

Also

$$-\sigma_{\text{cond}}\left(\mathsf{E}_{1}-\mathsf{E}_{2}\right)=\sigma_{\text{cond}}\left(\mathsf{E}_{1}\right)-\mathsf{E}_{2}$$

- Similar for \cap in place of –, but not for U
- Projection operation distributes over union $- \prod_{L} (E_1 \cup E_2) = (\prod_{L} (E_1) \cup \prod_{L} (E_2))$

Transformation Example: Pushing Selections

- Query: find the names of instructors in the Music department along with the titles of the courses they teach
 - $-\prod_{name, title} (\sigma_{dept_name="Music"} (instructor \bowtie (teaches \bowtie \Pi_{course_id,title} (course))))$
- Transformation
 - $\prod_{name, title} ((\sigma_{dept_name="Music"} (instructor) \bowtie (teaches \bowtie \Pi_{course_id,title} (course)))$
- Performing the selection as early as possible reduces the size of the relation to be joined

Multiple-Transformation Example

- Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses they taught
 - $-\prod_{name, title} (\sigma_{dept_name="Music" and year = 2009} (instructor \bowtie (teaches \bowtie \prod_{course_id, title} (course))))$
- Transform using join associativity
 - $-\prod_{name, title} (\sigma_{dept_name="Music" and year = 2009} \\ ((instructor \bowtie teaches) \bowtie \prod_{course_id, title} (course)))$

Multiple-Transformation Example

- Result of 1st transformation
 - $-\prod_{name, title} (\sigma_{dept_name="Music" and year = 2009} (teaches) \bowtie \prod_{course_id, title} (course)))$

(instructor ⋈

• Now transform the sub-expression

 $-\sigma_{dept_name="Music" and year = 2009}$ (instructor \bowtie teaches) Into

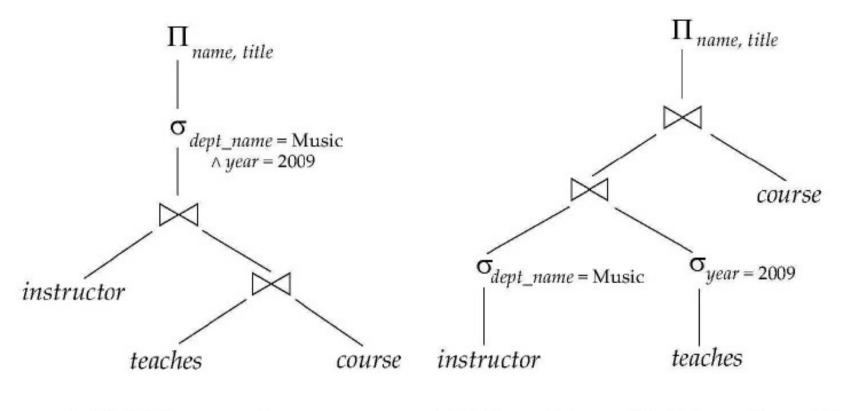
 $-\sigma_{dept_name="Music"}$ (instructor) $\bowtie \sigma_{year=2009}$ (teaches) Results in

 $- \prod_{name, title} (\sigma_{dept_name="Music"} (instructor) \bowtie \sigma_{year = 2009} (teaches)) \bowtie \prod_{course_id,title} (course)))$

Transformation: Pushing Projections

- Consider: ∏_{name, title} (σ_{dept_name="Music"} (instructor) ⋈ teaches) ⋈ ∏_{course_id,title} (course))))
- Computing σ_{dept_name="Music"} (instructor ≥ teaches) We obtain a relation with schema (ID, name, dept_name, salary, course_id, sec_id, semester, year)
 - Push projections using equivalence rules to eliminate unneeded attributes
 - $\prod_{name, title} (\prod_{name, corse_id} (\sigma_{dept_name="Music"} (instructor) \bowtie teaches) \bowtie \prod_{course_id, title} (course))))$
 - Performing projection as early as possible reduces the size of the relation to be joined

Multiple-Transformation Result



(a) Initial expression tree

(b) Tree after multiple transformations

Statistical Information for Cost Estimation

- n_r: number of tuples in a relation r
- b_r: number of blocks in relation r
- I_r: size of a tuple of r

- f_r: blocking factor of r i.e. the number of tuples that fit into one block
- V(A, r): number of distinct values that appear in r for attribute A, same as the size of ∏_A(r)
- If tuples of r are stored together physically in a file, then $b_r = \lceil n_r / f_r \rceil$

Estimating Size of a Projection

- R(a, b, c)
 - -a, b = 4bytes, c = 100bytes
 - Header = 12 bytes, total of 120 bytes
 - If block is 1024, can fit up to 8 tuples per block
- $\pi_{a+b=>x,c}(R)$
 - 116 bytes instead, still only 8 tuples per block
- π_{a,b} (R)

- 20 bytes, 50 tuples per block

Selection Size Estimation

- σ _{A=v} (r)
 - T(R) /V(A,r):
 - number of records that will satisfy the selection (assuming uniform distribution)
 - Equality condition on a key attribute
 - size estimate = 1

Selection Size Estimation

- $\sigma_{A \le v}$ (r) case of ($\sigma_{A \ge v}$ (r) is symmetric)
 - Let c denote the estimated number of tuples satisfying this condition
 - If min(A,r) and max(A, r) are available in catalog
 - c = 0 if v < min(A, r)
 - c = T(R) * ((v-min(A,r)) / max(A, r) min(A, r))
 - If a histogram is available, refine the above estimate
 - In absence of statistical information c is assumed to be T(R) /3.

Size Estimation of Complex Selections

- The <u>selectivity</u> of a condition cond_i is the probability that the tuple in the relation r satisfies cond_i
 - If s_i is the number of satisfying tuples in r, the selectivity of cond_i is given by $s_i/T(R)$
- Conjunction: σ_{cond1} and cond2 and ... condn</sub> (r)

 Assuming independence, estimate of tuples in the result is n_r * (s₁ * s₂ * ... s_n) / (T(R))ⁿ

Size Estimation of Complex Selections

Disjunction: σ<sub>cond₁ or cond₂ or ... cond_n (r)
 – Estimated number of tuples is:
</sub>

- T(R) * (1 - (1 - $s_1/T(R)$) * (1 - $s_2/T(R)$) * ... (1 - $s_n/T(R)$))

- Negation: $\sigma_{not cond_1}(r)$
 - Estimated number of tuples

$$- T(R) - size (\sigma_{cond_1}(r))$$

Estimating Join Cost

Join Operation Example

student \bowtie enrolled

- Catalog information:
 - n_{student} = 5000
 - $f_{student} = 50$ (meaning that $b_{student} = 5000/50 = 100$)
 - $n_{enrolled} = 10000$
 - $f_{enrolled} = 25 (b_{enrolled} = 10000/25 = 400)$
 - V(ID, enrolled) = 2500 which implies that on average each student is enrolled in 4 courses
 - Attribute ID is a foreign key referencing student

V(ID, student) = ?

- The Cartesian product r x s contains T(R)xT(S) tuples; each tuple occupies s_r+s_s bytes
 - R is the set of attributes of r
 - S is the set of attributes for s
- If $R \cap S = [\emptyset]$, then $r \bowtie s$ is the same as r x s
- If R ∩ S is a key for R, then a tuple of s will join with at most one tuple from r
 - Therefore, the number of tuples in r ⋈ s is no greater than the number of tuples in s

- If R ∩ S is a foreign key in S referencing R, then the number of tuples in r ⋈ s is exactly same as the number of tuples in s
 - The case of R \cap S being a foreign key referencing S is symmetric
- In the example query student ⋈ enrolled, ID in enrolled is a foreign key referencing student
 - Hence, the result has exactly n_{enrolled} tuples which is 10000

- If $R \cap S = [A]$ (set of attributes)
- If we assume that every tuple t in r produces tuples in r ⋈ s, the number of tuples in r ⋈ s is estimated to be : (n_r * n_s) / V(A, s)
 (If the reverse is true, the estimate is (n_r*n_s) / V(A, r)
- Different if V(A, r) ≠ V(A, s) => dangling tuples
 Lower of two estimates is probably more accurate
- Can improve on above with histograms...
 - Use formula similar to above, for each cell of histograms of the two relations

- Compute size estimates for student ⋈ enrolled (without using information about foreign keys)
 - V(ID, enrolled) = 2500 and
 - V(ID, student) = 5000
 - Two estimates are 5000 * 10000/2500 = 20K

and 10000* 5000/5000 = 10K

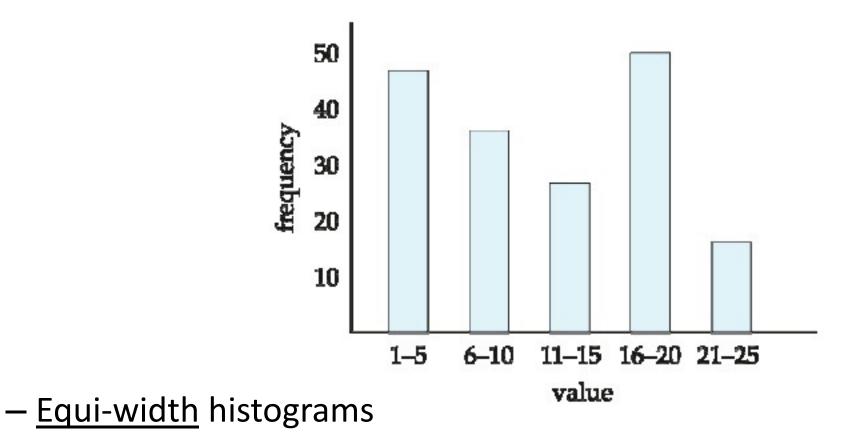
 We choose the lower estimate, which in this case is the same as our earlier computation using foreign keys

Estimating Size of Set Operations

- Union
 - Can be T(R) and T(R)+T(S)
- Intersection
 - Can be between 0 and T(S)
- Difference
 - Can be between T(R) and T(R)-T(S)
- Duplicate Elimination
 - Smaller of T(R)/2 and product of all V(R, a_i)

Histograms

• Histogram on attribute age of relation person



– <u>Equi-height</u> histograms

Join Ordering Example

• For all relations r₁, r₂ and r₃

$$-(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

(Join associativity)

If r₂ ⋈ r₃ is large and r₁ ⋈ r₂ is small, we choose

$$-(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation

Join Ordering Example

- Consider the expression
 - $\prod_{name, title} (\sigma_{dept_name="Music"} (instructor) \bowtie teaches) \bowtie \\ \prod_{course_id, title} (course))))$
- Could compute teaches ⋈ ∏_{course_id,title} (course) and then join result with

 $-\sigma_{dept_name="Music"}$ (instructor) but the result of the first join will likely be a large relation

 Only a small fraction of the university's instructors are likely to be from the Music department

- It is better to compute

 $\sigma_{dept_name="Music"}$ (instructor) \bowtie teaches first

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows
 - Apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
 - Add newly generated expressions to the set of equivalent expressions
 - Until no equivalent expressions are generated
- This approach is very expensive (space and time)

Implementing Transformation Based Optimization

- Space requirements are reduced by sharing common sub expressions
 - When E1 is generated from E2 by an equivalence rule, usually on top level is different, while subtrees below be shared using pointers
 - E.g., when applying join commutativity

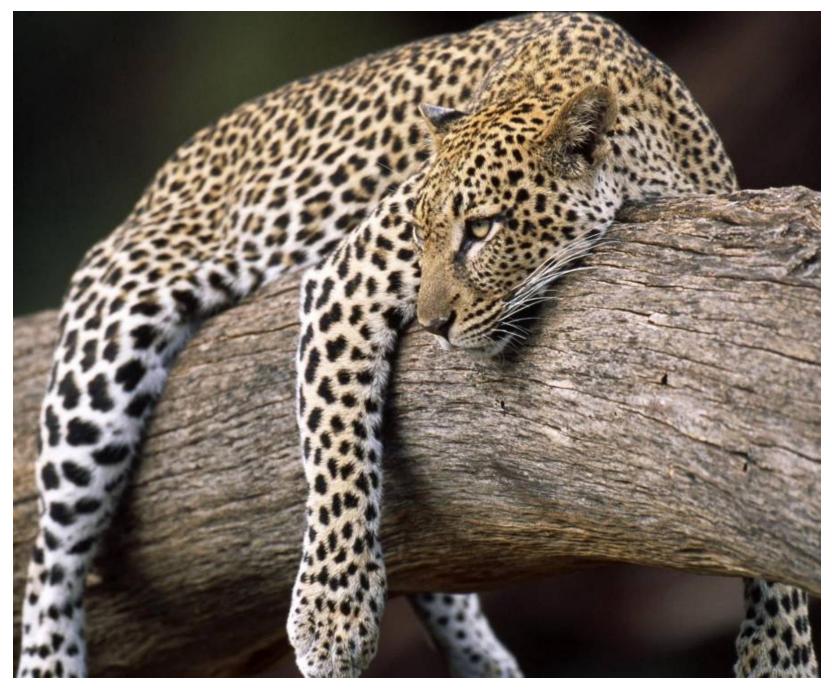
Same sub-expressions may appear multiple times

E1

E2

Detect duplicate sub-expressions and share one copy

A Break!



Cost Estimation

- Cost of each operator computed
 - Need statistics of input relations
 - E.g., number of tuples, sizes of attributes
- Inputs can be results of sub-expressions
 - Need to estimate statistics of expressions results
 - To do so, we require additional statistics
 - E.g., number of distinct values for an attribute

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
 - Choosing the cheapest algorithm for each algorithm independently may not yield best overall algorithm
 - E.g., merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation
 - Nested-loop join may provide opportunity for pipelining
- Query optimizers incorporate elements of the following general approaches
 - Search all the plans and choose the best plan in a cost-based fashion
 - Use heuristics to choose a plan

Cost-Based Optimization

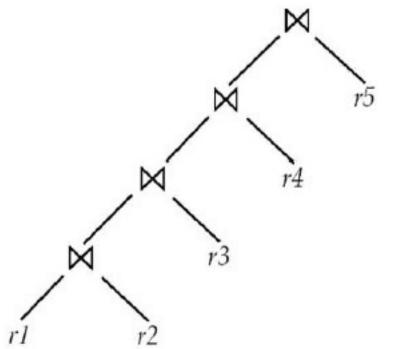
- Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie r_3 \bowtie ... r_n$
- There are (2(n-1))!/(n-1)! Different join orders for above expression
 - With n = 7, the number is 665,280
 - With n=10, the number is greater than 176 billion!
- No need to generate all the join orders:
 - Using dynamic programming, the least-cost of join order for any subset of (r₁, r₂, ...r_n} is computed only once and stored for future use

Dynamic Programming Optimization

- To find the best join tree for a set of n relations
 - Consider all possible plans of the form S_1 join (S- S_1), where S_1 is any non-empty subset of S
 - Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest of the 2ⁿ – 2 alternatives
 - Base case for recursion: single relation access plan
 - Apply all selections on R_i using best choice of indices of R_i
 - When plan for any subset is computed, store it and reuse it when it is required again, instead of re-computing it
 - Dynamic programming

Left Deep Join Trees

 In <u>left-deep join trees</u>, the right-hand-side input for each join is a relation, rather than a result of another (intermediate) join



(a) Left-deep join tree

(b) Non-left-deep join tree

Interesting Sort Orders

• Consider the expression $(r_1 \bowtie r_2) \bowtie r_3$

Using common attribute A

- An <u>interesting sort order</u> is a particular sort order of tuples that could be useful for a later operation
 - Using merge-join to compute r₁ ⋈ r₂ may be costlier than hash join but generates result sorted on A
 - Which, in turn, may make merge-join with r₃ cheaper, which may reduce cost of join with r₃ and minimizing the overall cost
 - Sort order may also be useful for order by and for group by

Interesting Sort Orders

- Expression ($r_1 \bowtie r_2$) $\bowtie r_3$
 - At least 2 interesting sort orders, "none" and "sorted on A"
- Not sufficient to find the best join order for each subset of the set of n given relations
 - Must find the best join order for each subset, for each interesting sort order
 - Simple extension of earlier dynamic programming algorithms
 - Usually, number of interesting orders is quite small and doesn't affect time/space complexity significantly

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
- Systems may use <u>heuristics</u> to reduce the number of choices that must be made in a cost-based fashion
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not always) improve execution performance
 - Perform selection early (reduces number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restriction selection and join operations (i.e. smallest result size) before other similar operations
 - Some systems use only heuristics, other combine heuristics with partial cost-based optimization

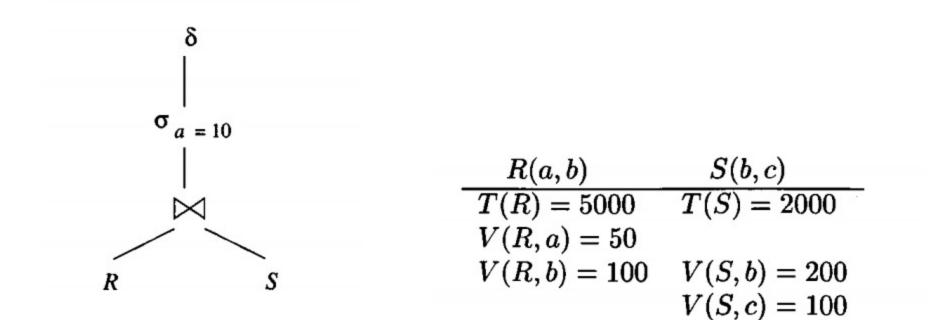
Structure of Query Optimizers

- Many optimizers consider only left-deep join orders
 - Plus heuristics to push selections and projections down the query tree
 - Reduces optimization complexity and generates plans amenable to pipelined evaluation
- Heuristic optimization used in some versions of Oracle
 - Repeatedly pick "best" relation to join next
 - Starting from each of n starting points, pick best among these
- Intricacies of SQL complicate query optimization
 - Nested sub-queries

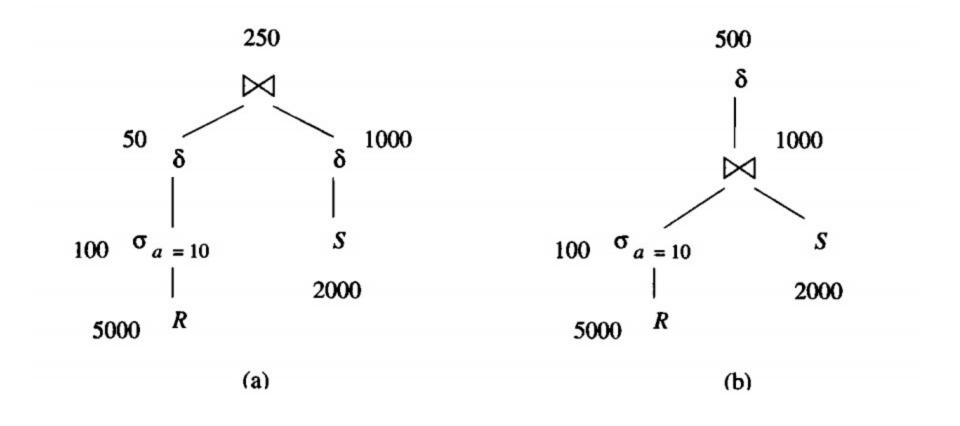
Structure of Query Optimizers

- Some query optimizers integrate heuristics selection and the generation of alternative access plans
 - Frequently used approach
 - Heuristic rewriting of nested block structure and aggregation
 - Followed by cost-based join-order optimization for each block
 - <u>Optimization cost budget</u> to stop optimization early (if cost of plan is less than cost of optimization)
 - <u>Plan caching</u> to reuse previous computed plan if query is resubmitted
 - Even with different constants in query
- Even with the use of heuristics, cost-based query optimization imposes a substantial overhead
 - Typically worth it for expensive queries
 - Optimizers often use simple heuristics for very cheap queries, and perform exhaustive enumeration for more expensive queries.

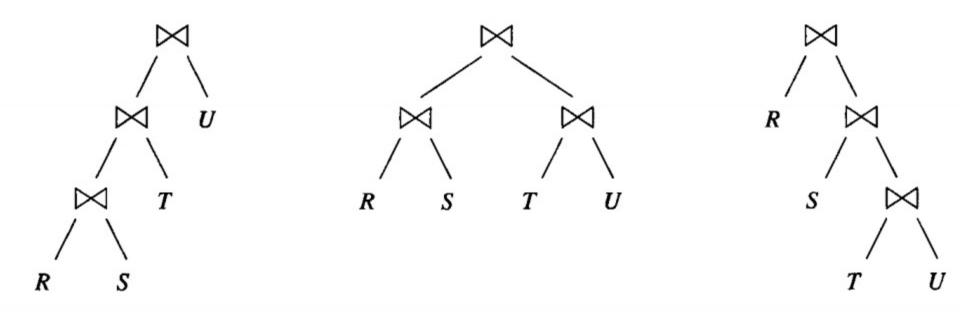
Example Query



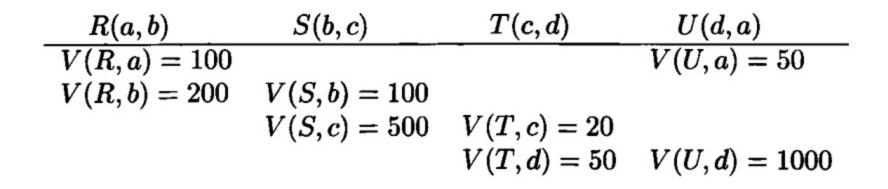
Two Query Plans



Possible Joins for R,S,T,U



Stats and Singleton Sets



	$\{R\}$	$\{S\}$	$\{T\}$	$\{U\}$
Size	1000	1000	1000	1000
Cost	0	0	0	0
Best plan	R	S	T	U

Pairs and Triples of Relations

	$\{R,S\}$	$\{R,T\}$	$\{R,U\}$	$\{S,T\}$	$\{S,U\}$	$\{T,U\}$
Size	5000	1,000,000	10,000	2000	1,000,000	1000
Cost	0	0	0	0	0	0
Best plan	$R \bowtie S$	$R \bowtie T$	$R \bowtie U$	$S \bowtie T$	$S \bowtie U$	$T \bowtie U$

	$\{R,S,T\}$	$\{R, S, U\}$	$\{R,T,U\}$	$\{S,T,U\}$
Size	10,000	50,000	10,000	2,000
\mathbf{Cost}	2,000	5,000	1,000	1,000
Best plan	$(S \bowtie T) \bowtie R$	$(R \bowtie S) \bowtie U$	$(T \bowtie U) \bowtie R$	$(T \bowtie U) \bowtie S$

Grouping	\mathbf{Cost}	
$\overline{((S \bowtie T) \bowtie R) \bowtie U}$	12,000	
$((R \bowtie S) \bowtie U) \bowtie T$	55,000	
$((T \bowtie U) \bowtie R) \bowtie S$	11,000	
$((T \bowtie U) \bowtie S) \bowtie R$	3,000	
$(T \bowtie U) \bowtie (R \bowtie S)$	6,000	
$(R \bowtie T) \bowtie (S \bowtie U)$	2,000,000	
$(S \bowtie T) \bowtie (R \bowtie U)$	12,000	

Greedy Join & Join Selectivity

- Choose the smallest join
- T⋈U => (T⋈U) ⋈S=> ((T⋈U)⋈S)⋈R
- Selectivity = ratio between input and output
- Greedy approach picks the smallest selectivity

Physical Query Plan

- Choose algorithms to access data
 - Index scan/table scan
 - Join one pass/sort-join/INLJ/Hash join
- Materialized vs Pipelined
 - Buffer space

Long Indexes

select name, department

from employees

where age in (64, 65) and salary < 75000
and gender='female' and performance > 5;

• Build a composite index on everything

– (gender, age, performance, salary)

- ...what about "or performance > 5"
- Downsides to the composite index approach?

Covering Indexes

select name, department

from employees

where age in (64, 65) and salary < 75000
and gender='female' and performance > 5;

- Use index (gender, age, salary, performance)
 - Lookup the rows positions and sort
 - Table could be really, really large
- Consider the following index

– (gender, age, salary, performance, name, department)

Covering Indexes

select name, department

from employees

where age in (64, 65) and salary < 75000
and gender='female' and performance > 5;

- Use the index
 - (gender, age, salary, performance, name, department)
 - Do not follow the pointers to the table!
 - Read the requested values from the keys

Composite Indexes

- Composite/covering indexes keys are large
- What is the problem?
- Index might be very large
 Come back to that
- B+-Tree performance suffers
 - Long keys
 - E.g., 900 byte limit in SQL Server

Included Columns

- MS SQL Server
- Index:
 - (gender, age, salary, performance, name, department)
- Alternatively
 - Create index Name on Employees (gender, age, salary, performance) include (name, department)
 - Benefits of covering index w/out long key!

Prefix Suppression

- Oracle
- Consider our index with a long key
 - gender, age, salary, performance, name, department
 - (6 chars)+(3 digits)+(8 dig) + (2 dig) + (21 char)+(10 char)
 - Every key takes 50 bytes, and given 512-byte page
 - What's the fan-out of the B+-tree?
- What about neighboring keys in the index?

Values sorted in the leaves

Index Organized Tables (IOTs)

• Hide the data in the B-Tree!

Oracle and MySQL

- Merge the structures
 - Different from regular clustering
 - Share the structure properties

Few-Valued Columns

 Few-valued columns partition (sorted) data into "buckets"

– E.g., gender column, performance, age

• Few-valued columns also create many opportunities for compression

Using Parts of a Composite Index

```
    Index: (gender, age, salary, performance)
    select name, department
    from employees
    where age in (64, 65) and salary < 75000</li>
    and gender='male' and performance > 5;
```

select name, department
from employees
where age in (64, 65) and salary < 75000 and gender='male';</pre>

select name, department
from employees
where age in (64, 65) and gender='male';

Using Parts of a Composite Index

```
    Index: (gender, age, salary, performance)
    select name, department
    from employees
    where age in (64, 65) and salary < 75000</li>
    and gender='male' and performance > 5;
```

select name, department
from employees
where salary < 75000 and gender='male' and performance > 5;

select name, department
from employees
where salary < 75000 and performance > 5;

Skip-Scan

- Oracle
 - Few-valued attributes as prefix
 - Searches every sub-B+-tree to compensate
- SQL Server
 - Adds predicates for few-valued attribute in prefix
 - E.g., index on (year, salary)
 - Convert "year > 2009" into "year in (2010,2011)"
 - Statistics!

Bitmap Indexes

- An index lets us map values to rowIDs
 - Age in (64,65)

...

- Row pointers = (3,4,150,200,500,1000)
- What if we just stored the per-value pointers?
 Age = 18 => (1, 333, 555, 1001)

Bitmap Indexes

- Only works on few-valued columns
- Oracle and DB2
- Two ways of storing the same data
 - List of RowIDs
 - Dense 0,1 values

Views

• A view is a "virtual table"

create view dept_tot_salary(dept_name, tot_salary) as
select dept_name, sum(salary)

from instructor

group by dept_name

- Does not do much to optimize queries
 - Security, convenience, possibly query optimization
 - Optimizer may reconstruct
- Oracle will even preserve views when instructor table is dropped (how?)

Materialized Views

- Views are nearly cost-free
- Automatically updated (with table changes)
- ... but not very useful
- Materialized Views
 - Compute and store the query
 - Use the view directly
 - Space cost
 - Maintenance cost

Dept_Name	SUM(Salary)
Comp. Sci.	10M
Music	2M
Economics	11M
History	1M
Comics Studies	500K
Numerology	750K

Using Materialized Views

 Materialized View (MV) is similar to a precomputed query

- Simpler language semantics

Best case, Q_a = MV_a

- Maintenance and disk space limitations

- Otherwise a lot of work
 - Pre-join
 - Pre-filtered
 - Pre-aggregated

Pre-joined Materialized View

- Consider $MV_a = r \bowtie s$
- Can be used to optimize query r ⋈ s ⋈ t₁ ⋈ t₂
 If query plan costs are lower
 - Can't use indexes on s,r with MV_a
 - MV_a needs the right key for join
- MV_a has indexes of its own
 - In some DBs first (clustered) index materializes
 - All table-indexing considerations apply to MVs

Pre-filtered Materialized View

- Consider $MV_b = \sigma_{salary > 75,000} (r \bowtie s)$
 - Used to optimize query $\sigma_{salary > 75,000}$ (r \bowtie s)
 - Or $\sigma_{\text{salary} > 100,000}$ (r \bowtie s)
 - But not $\sigma_{\text{salary} > 71,000}$ (r \bowtie s)
- Design a compromise
 - Cannot afford all pre-computation
 - Find the smallest suitable MV
 - E.g., σ_{salary > 70,000} (r ⋈ s)

Pre-aggregated Materialized View

- MV_b = _{dept_name,gender}G_{sum(salary)}(instructors)
 - Optimize query _{dept_name,gender}G_{sum(salary)}(instr)
 - Or _{dept_name}G_{sum(salary)}(instructors)
 - But not dept_name, position G_{sum(salary)} (instructors)
- Design a compromise
 - Find the best shared aggregation
 - Data cubes

Materialized View Maintenance

- The task of keeping a materialized view up-todate with the underlying data is know as <u>materialized view maintenance</u>
- Materialized views using <u>incremental view</u> <u>maintenance</u>
 - Changes do database relations are used to compute changes to the materialized view, which is then updated

Index Maintenance

- B+tree index
 - Amortized logarithmic cost of update
 - Roughly linear in # of indexes
 - Buffer conflicts
- Clustered B+trees index
 - Restructuring table is expensive
 - Update every secondary index
 - Some DBMSes do not offer support (IOTs)

Materialized View Maintenance

- Materialized Views
 - Simply propagate the row (or delete the row)
 - Update all affected views and indexes
- Pre-filtered MVs
 - Only update the row if it is relevant
 - E.g., MV = $\sigma_{salary > 75,000}$ (r)
 - Only update if new faculty has salary > 75K

Materialized View Maintenance

- Pre-joined MVs
 - Update all affected MVs
 - Execute all necessary joins (may be expensive)
 - Then, propagate the updates
- Pre-aggregated MVs
 - For **sum/avg** can just add new value
 - What about delete?
 - What about max/min?

Update Batching

- Individual row-inserts are expensive
 - Building a query plan per insert
 - Caching is unreliable
- Batch the inserts
 - B+-trees can be bulk-updated
 - Similarly, MVs can be bulk-updated
 - MyISAM and PostgreSQL batch internally
- Updates periodic in data warehouses