
CSC 553
Advanced Database Concepts

Lecture 6

Alexander Rasin
College of CDM, DePaul University

May 2nd, 2022

1

Query Processing Steps

SQL Query
Parser and
translator

Relational
algebra expr.

Optimizer

Execution
Plan

Evaluation
Engine

Query
Output

DATA

Statistics
about
data

2

Optimization Fundamentals

• Relational algebra expressions can be
substituted for other equivalent expressions
– E.g., σ salary<75000(πsalary(instructor)) is equivalent

to πsalary(σsalary<75000(instructor))

• Each relational algebra operation (such as
σsalary<75000) can be evaluated using several
different algorithms
– Therefore, a full relational-algebra expression can

be evaluated in many ways

3

Query Optimization Options

• Consider the relational algebra operator such
as σsalary<75000(instructors) and the evaluation
options
– Use an index on salary (if any) to find instructors

who make less than 75000
– Perform a complete relation scan and discard

instructors with salary ≥ 75000

• Annotated expression specifying the
evaluation strategy is called evaluation-plan

4

Query Plans

5

The Intuition
• Alternative ways of evaluating a given query
– Equivalent expressions
– Different algorithms for each operation

6

Equivalence Rules
• Conjunctive selection operations can be

deconstructed into a sequence of individual
selections
– σcond1 and cond2(E) = σcond1 (σcond2(E))

• Selection operations are commutative
– σcond1 (σcond2(E)) = σcond2 (σcond1(E))

7

Equivalence Rules
• Only the last in a sequence of projection

operations is needed, the others can be
omitted
– ∏L1(∏L2(…(∏Ln(E)))) = ∏L1(E)

• Selections can be combined with Cartesian
products and joins
– σcond1(E1 X E2) = E1 ⋈cond1 E2

– σcond1(E1 ⋈cond2 E2) = E1 ⋈cond1 and cond2 E2

8

Equivalence Rules
• Joins are commutative
– E1 ⋈cond1 E2 = E2 ⋈cond1 E1

• Natural joins are associative
– (E1 ⋈ E2) ⋈ E3 = E1 ⋈ (E2 ⋈ E3)
– (E1 join E2) join E3 = E1 join (E2 join E3)

• Joins are associative with a condition
– (E1 ⋈cond1 E2) ⋈cond2 and cond3 E3 =

E1 ⋈cond1 and cond3 (E2 ⋈cond2 E3)
where cond2 involves attributes from only E2/E3

9

Equivalence
Rules

10

Equivalence Rules

• Set operations union and intersection are
commutative
– E1 U E2 = E2 U E1

– E1 ∩ E2 = E2 ∩ E1

– Set difference is not commutative

• Set union and intersection are associative
– (E1 U E2) U E3 = E1 U (E2 U E3)
– (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

11

Equivalence Rules
• Selection operation distributes over U and ∩

and –
– σcond(E1 – E2) = σcond (E1) – σcond (E2)
– Similar for U and ∩

• Also
– σcond (E1 – E2) = σcond (E1) – E2

– Similar for ∩ in place of –, but not for U
• Projection operation distributes over union
– ∏L(E1 U E2) = (∏L(E1) U ∏L (E2))

12

Transformation Example: Pushing Selections
• Query: find the names of instructors in the Music

department along with the titles of the courses
they teach
– ∏name, title (σdept_name=“Music” (instructor ⋈ (teaches ⋈

∏course_id,title (course))))
• Transformation
– ∏name, title ((σdept_name=“Music” (instructor) ⋈ (teaches ⋈

∏course_id,title (course)))
• Performing the selection as early as possible

reduces the size of the relation to be joined

13

Multiple-Transformation Example
• Find the names of all instructors in the Music

department who have taught a course in 2009,
along with the titles of the courses they taught
– ∏name, title (σdept_name=“Music” and year = 2009

(instructor ⋈ (teaches ⋈ ∏course_id,title (course))))

• Transform using join associativity
– ∏name, title (σdept_name=“Music” and year = 2009

((instructor ⋈ teaches) ⋈ ∏course_id,title (course)))

14

Multiple-Transformation Example
• Result of 1st transformation
– ∏name, title (σdept_name=“Music” and year = 2009 (instructor ⋈

teaches) ⋈ ∏course_id,title (course)))
• Now transform the sub-expression
– σdept_name=“Music” and year = 2009(instructor ⋈ teaches)
Into
– σdept_name=“Music” (instructor)⋈ σ year = 2009 (teaches)
Results in
– ∏name, title (σdept_name=“Music” (instructor)⋈ σ year = 2009

(teaches)) ⋈ ∏course_id,title (course)))

15

Transformation: Pushing Projections
• Consider: ∏name, title (σdept_name=“Music” (instructor)⋈

teaches) ⋈ ∏course_id,title (course))))
• Computing σdept_name=“Music”(instructor⋈teaches)

We obtain a relation with schema
(ID, name, dept_name, salary, course_id, sec_id, semester, year)
– Push projections using equivalence rules to eliminate

unneeded attributes
– ∏name, title (∏name, corse_id (σdept_name=“Music” (instructor)⋈

teaches) ⋈ ∏course_id,title (course))))
– Performing projection as early as possible reduces the

size of the relation to be joined

16

Multiple-Transformation Result

17

Statistical Information for
Cost Estimation

• nr: number of tuples in a relation r
• br: number of blocks in relation r
• Ir: size of a tuple of r
• fr: blocking factor of r – i.e. the number of tuples

that fit into one block
• V(A, r): number of distinct values that appear in r

for attribute A, same as the size of ∏A(r)
• If tuples of r are stored together physically in a

file, then br = ┌nr/fr
┐

18

Estimating Size of a Projection

• R(a, b, c)
– a, b = 4bytes, c = 100bytes
– Header = 12 bytes, total of 120 bytes
– If block is 1024, can fit up to 8 tuples per block

• πa+b=>x,c(R)
– 116 bytes instead, still only 8 tuples per block

• πa,b (R)
– 20 bytes, 50 tuples per block

Selection Size Estimation

• σ A=v (r)
– T(R) /V(A,r):
• number of records that will satisfy the selection

(assuming uniform distribution)

– Equality condition on a key attribute
• size estimate = 1

20

Selection Size Estimation

• σ A≤v (r) case of (σ A≥v (r) is symmetric)
– Let c denote the estimated number of tuples

satisfying this condition
– If min(A,r) and max(A, r) are available in catalog
• c = 0 if v < min(A, r)
• c = T(R) * ((v-min(A,r)) / max(A, r) – min(A, r))
• If a histogram is available, refine the above estimate
• In absence of statistical information c is assumed to be

T(R) /3.

21

Size Estimation of Complex Selections

• The selectivity of a condition condi is the
probability that the tuple in the relation r
satisfies condi

– If si is the number of satisfying tuples in r, the
selectivity of condi is given by si/ T(R)

• Conjunction: σ cond1 and cond2 and … condn
(r)

– Assuming independence, estimate of tuples in the
result is nr * (s1 * s2 * … sn) / (T(R))n

22

Size Estimation of Complex Selections

• Disjunction: σ cond1 or cond2 or … condn
(r)

– Estimated number of tuples is:
– T(R) * (1 - (1 - s1/T(R)) * (1 - s2/ T(R)) * … (1 - sn/

T(R)))

• Negation: σ not cond1
(r)

– Estimated number of tuples
– T(R) – size (σ cond1

(r))

23

Estimating Join Cost

24

Join Operation Example
student ⋈ enrolled

• Catalog information:
– nstudent = 5000
– fstudent = 50 (meaning that bstudent = 5000/50 = 100)
– nenrolled = 10000
– fenrolled = 25 (benrolled = 10000/25 = 400)
– V(ID, enrolled) = 2500 which implies that on

average each student is enrolled in 4 courses
• Attribute ID is a foreign key referencing student
• V(ID, student) = 5000 (primary key!)

25

V(ID, student) = ?

Estimation of the Size of Joins

• The Cartesian product r x s contains T(R)xT(S)
tuples; each tuple occupies sr+ss bytes
– R is the set of attributes of r
– S is the set of attributes for s

• If R ∩ S = [Ø], then r ⋈ s is the same as r x s
• If R ∩ S is a key for R, then a tuple of s will join

with at most one tuple from r
– Therefore, the number of tuples in r ⋈ s is no

greater than the number of tuples in s

26

Estimation of the Size of Joins

• If R ∩ S is a foreign key in S referencing R, then
the number of tuples in r ⋈ s is exactly same
as the number of tuples in s
– The case of R ∩ S being a foreign key referencing S

is symmetric

• In the example query student ⋈ enrolled, ID in
enrolled is a foreign key referencing student
– Hence, the result has exactly nenrolled tuples which

is 10000

27

Estimation of the Size of Joins
• If R ∩ S = [A] (set of attributes)
• If we assume that every tuple t in r produces

tuples in r ⋈ s, the number of tuples in r ⋈ s is
estimated to be : (nr * ns) / V(A, s)
(If the reverse is true, the estimate is (nr*ns) / V(A, r)

• Different if V(A, r) ≠ V(A, s) => dangling tuples
– Lower of two estimates is probably more accurate

• Can improve on above with histograms…
– Use formula similar to above, for each cell of

histograms of the two relations

28

Estimation of the Size of Joins

• Compute size estimates for student ⋈ enrolled
(without using information about foreign keys)
– V(ID, enrolled) = 2500 and
– V(ID, student) = 5000
– Two estimates are 5000 * 10000/2500 = 20K
– and 10000* 5000/5000 = 10K
– We choose the lower estimate, which in this case

is the same as our earlier computation using
foreign keys

29

Estimating Size of Set Operations

• Union
– Can be T(R) and T(R)+T(S)

• Intersection
– Can be between 0 and T(S)

• Difference
– Can be between T(R) and T(R)-T(S)

• Duplicate Elimination
– Smaller of T(R)/2 and product of all V(R, ai)

Histograms
• Histogram on attribute age of relation person

– Equi-width histograms
– Equi-height histograms

31

Join Ordering Example

• For all relations r1, r2 and r3

– (r1 ⋈ r2) ⋈ r3 = r1 ⋈ (r2 ⋈ r3)

(Join associativity)

• If r2 ⋈ r3 is large and r1 ⋈ r2 is small, we
choose
– (r1 ⋈ r2) ⋈ r3

so that we compute and store a smaller temporary
relation

32

Join Ordering Example
• Consider the expression
– ∏name, title (σdept_name=“Music” (instructor)⋈ teaches) ⋈

∏course_id,title (course))))
• Could compute teaches ⋈ ∏course_id,title (course) and

then join result with
– σdept_name=“Music” (instructor)
but the result of the first join will likely be a large relation

• Only a small fraction of the university’s instructors
are likely to be from the Music department
– It is better to compute

σdept_name=“Music” (instructor) ⋈ teaches first

33

Enumeration of Equivalent Expressions
• Query optimizers use equivalence rules to systematically

generate expressions equivalent to the given expression
• Can generate all equivalent expressions as follows
– Apply all applicable equivalence rules on every sub-

expression of every equivalent expression found so far
– Add newly generated expressions to the set of

equivalent expressions
– Until no equivalent expressions are generated

• This approach is very expensive (space and time)

34

Implementing Transformation Based
Optimization

• Space requirements are reduced by sharing
common sub expressions
– When E1 is generated from E2 by an equivalence

rule, usually on top level is different, while sub-
trees below be shared using pointers
• E.g., when applying
join commutativity

• Same sub-expressions may appear multiple times
– Detect duplicate sub-expressions and share one copy

35

36

A
Br

ea
k!

Cost Estimation

• Cost of each operator computed
– Need statistics of input relations
• E.g., number of tuples, sizes of attributes

• Inputs can be results of sub-expressions
– Need to estimate statistics of expressions results
– To do so, we require additional statistics
• E.g., number of distinct values for an attribute

37

Choice of Evaluation Plans
• Must consider the interaction of evaluation techniques

when choosing evaluation plans
– Choosing the cheapest algorithm for each algorithm

independently may not yield best overall algorithm
• E.g., merge-join may be costlier than hash-join, but may provide a

sorted output which reduces the cost for an outer level aggregation
• Nested-loop join may provide opportunity for pipelining

• Query optimizers incorporate elements of the following
general approaches
– Search all the plans and choose the best plan in a cost-based

fashion
– Use heuristics to choose a plan

38

Cost-Based Optimization
• Consider finding the best join-order for

r1 ⋈ r2 ⋈ r3 ⋈ … rn

• There are (2(n-1))!/(n-1)! Different join orders for
above expression
– With n = 7, the number is 665,280
– With n=10, the number is greater than 176 billion!

• No need to generate all the join orders:
– Using dynamic programming, the least-cost of join

order for any subset of (r1, r2, …rn} is computed only
once and stored for future use

39

Dynamic Programming Optimization

• To find the best join tree for a set of n relations
– Consider all possible plans of the form S1 join (S-S1), where

S1 is any non-empty subset of S
– Recursively compute costs for joining subsets of S to find

the cost of each plan. Choose the cheapest of the 2n – 2
alternatives

– Base case for recursion: single relation access plan
• Apply all selections on Ri using best choice of indices of Ri

– When plan for any subset is computed, store it and reuse it
when it is required again, instead of re-computing it
• Dynamic programming

40

Left Deep Join Trees
• In left-deep join trees, the right-hand-side

input for each join is a relation, rather than a
result of another (intermediate) join

41

Interesting Sort Orders

• Consider the expression (r1 ⋈ r2) ⋈ r3
– Using common attribute A

• An interesting sort order is a particular sort order of
tuples that could be useful for a later operation
– Using merge-join to compute r1 ⋈ r2 may be costlier than

hash join but generates result sorted on A
– Which, in turn, may make merge-join with r3 cheaper, which

may reduce cost of join with r3 and minimizing the overall
cost

– Sort order may also be useful for order by and for group by

42

Interesting Sort Orders

• Expression (r1 ⋈ r2) ⋈ r3
– At least 2 interesting sort orders, “none” and “sorted on A”

• Not sufficient to find the best join order for each
subset of the set of n given relations
– Must find the best join order for each subset, for each

interesting sort order
– Simple extension of earlier dynamic programming

algorithms
– Usually, number of interesting orders is quite small and

doesn’t affect time/space complexity significantly

43

Heuristic Optimization
• Cost-based optimization is expensive, even with dynamic

programming
• Systems may use heuristics to reduce the number of choices

that must be made in a cost-based fashion
• Heuristic optimization transforms the query-tree by using a

set of rules that typically (but not always) improve execution
performance
– Perform selection early (reduces number of tuples)
– Perform projection early (reduces the number of attributes)
– Perform most restriction selection and join operations (i.e. smallest

result size) before other similar operations
– Some systems use only heuristics, other combine heuristics with

partial cost-based optimization

44

Structure of Query Optimizers
• Many optimizers consider only left-deep join orders
– Plus heuristics to push selections and projections down the

query tree
– Reduces optimization complexity and generates plans

amenable to pipelined evaluation
• Heuristic optimization used in some versions of

Oracle
– Repeatedly pick “best” relation to join next

• Starting from each of n starting points, pick best among these

• Intricacies of SQL complicate query optimization
– Nested sub-queries

45

Structure of Query Optimizers
• Some query optimizers integrate heuristics selection and the

generation of alternative access plans
– Frequently used approach

• Heuristic rewriting of nested block structure and aggregation
• Followed by cost-based join-order optimization for each block

– Optimization cost budget to stop optimization early (if cost of plan is less
than cost of optimization)

– Plan caching to reuse previous computed plan if query is resubmitted
• Even with different constants in query

• Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead
– Typically worth it for expensive queries
– Optimizers often use simple heuristics for very cheap queries, and perform

exhaustive enumeration for more expensive queries.

46

Example Query

Two Query Plans

Possible Joins for R,S,T,U

Stats and Singleton Sets

Pairs and Triples of Relations

Greedy Join & Join Selectivity

• Choose the smallest join
• T⨝U => (T⨝U) ⨝S=> ((T⨝U)⨝S)⨝R
• Selectivity = ratio between input and output
• Greedy approach picks the smallest selectivity

Physical Query Plan

• Choose algorithms to access data
– Index scan/table scan
– Join one pass/sort-join/INLJ/Hash join

• Materialized vs Pipelined
– Buffer space

Long Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000
and gender=‘female’ and performance > 5;

• Build a composite index on everything
– (gender, age, performance, salary)

• …what about “or performance > 5”
• Downsides to the composite index approach?

55

Covering Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000
and gender=‘female’ and performance > 5;
• Use index (gender, age, salary, performance)
– Lookup the rows positions and sort
– Table could be really, really large

• Consider the following index
– (gender, age, salary, performance, name, department)

56

Covering Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000
and gender=‘female’ and performance > 5;

• Use the index
– (gender, age, salary, performance, name, department)
– Do not follow the pointers to the table!
– Read the requested values from the keys

57

Composite Indexes

• Composite/covering indexes keys are large
• What is the problem?
• Index might be very large
– Come back to that

• B+-Tree performance suffers
– Long keys
– E.g., 900 byte limit in SQL Server

58

Included Columns

• MS SQL Server
• Index:
• (gender, age, salary, performance, name, department)

• Alternatively
• Create index Name on Employees

(gender, age, salary, performance)
include (name, department)

• Benefits of covering index w/out long key!

59

Prefix Suppression

• Oracle
• Consider our index with a long key
– gender, age, salary, performance, name, department
– (6 chars)+(3 digits)+(8 dig) + (2 dig) + (21 char)+(10 char)
– Every key takes 50 bytes, and given 512-byte page

• What’s the fan-out of the B+-tree?

• What about neighboring keys in the index?
– Values sorted in the leaves

60

Index Organized Tables (IOTs)

• Hide the data in the B-Tree!
– Oracle and MySQL

• Merge the structures
– Different from regular clustering
– Share the structure properties

61

Few-Valued Columns

• Few-valued columns partition (sorted) data
into “buckets”
– E.g., gender column, performance, age

• Few-valued columns also create many
opportunities for compression

62

Using Parts of a Composite Index
• Index: (gender, age, salary, performance)
select name, department
from employees
where age in (64, 65) and salary < 75000
and gender=‘male’ and performance > 5;

select name, department
from employees
where age in (64, 65) and salary < 75000 and gender=‘male’;

select name, department
from employees
where age in (64, 65) and gender=‘male’;

63

Using Parts of a Composite Index
• Index: (gender, age, salary, performance)
select name, department
from employees
where age in (64, 65) and salary < 75000
and gender=‘male’ and performance > 5;

select name, department
from employees
where salary < 75000 and gender=‘male’ and performance > 5;

select name, department
from employees
where salary < 75000 and performance > 5;

64

Skip-Scan

• Oracle
– Few-valued attributes as prefix
– Searches every sub-B+-tree to compensate

• SQL Server
– Adds predicates for few-valued attribute in prefix
– E.g., index on (year, salary)
– Convert “year > 2009” into “year in (2010,2011)”
• Statistics!

65

Bitmap Indexes

• An index lets us map values to rowIDs
– Age in (64,65)
– Row pointers = (3,4,150,200,500,1000)

• What if we just stored the per-value pointers?
– Age = 18 => (1, 333, 555, 1001)
– …
– Age = 64 => (3, 150, 500, 1000)
– Age = 65 => (4, 200)

66

Bitmap Indexes

• Only works on few-valued columns
• Oracle and DB2
• Two ways of storing the same data
– List of RowIDs
– Dense 0,1 values

67

Views
• A view is a “virtual table”

create view dept_tot_salary(dept_name, tot_salary) as
select dept_name, sum(salary)

from instructor
group by dept_name

• Does not do much to optimize queries
– Security, convenience, possibly query optimization

• Optimizer may reconstruct

• Oracle will even preserve views when instructor
table is dropped (how?)

68

Materialized Views

• Views are nearly cost-free
• Automatically updated (with table changes)
• … but not very useful
• Materialized Views
• Compute and store the query
• Use the view directly
• Space cost
• Maintenance cost

69

Dept_Name SUM(Salary)

Comp. Sci. 10M

Music 2M

Economics 11M

History 1M

Comics Studies 500K

Numerology 750K

Using Materialized Views

• Materialized View (MV) is similar to a pre-
computed query
– Simpler language semantics

• Best case, Qa = MVa
– Maintenance and disk space limitations

• Otherwise a lot of work
– Pre-join
– Pre-filtered
– Pre-aggregated

70

Pre-joined Materialized View

• Consider MVa = r ⋈ s
• Can be used to optimize query r ⋈ s ⋈ t1 ⋈ t2

– If query plan costs are lower
• Can’t use indexes on s,r with MVa

– MVa needs the right key for join

• MVa has indexes of its own
– In some DBs first (clustered) index materializes
– All table-indexing considerations apply to MVs

71

Pre-filtered Materialized View

• Consider MVb = σsalary > 75,000 (r ⋈ s)
– Used to optimize query σsalary > 75,000 (r ⋈ s)
– Or σsalary > 100,000 (r ⋈ s)
– But not σsalary > 71,000 (r ⋈ s)

• Design a compromise
– Cannot afford all pre-computation
– Find the smallest suitable MV
• E.g., σsalary > 70,000 (r ⋈ s)

72

Pre-aggregated Materialized View

• MVb = dept_name,genderGsum(salary)(instructors)
– Optimize query dept_name,genderGsum(salary)(instr)
– Or dept_nameGsum(salary)(instructors)
– But not dept_name,positionGsum(salary)(instructors)

• Design a compromise
– Find the best shared aggregation
– Data cubes

73

Materialized View Maintenance

• The task of keeping a materialized view up-to-
date with the underlying data is know as
materialized view maintenance

• Materialized views using incremental view
maintenance
– Changes do database relations are used to

compute changes to the materialized view, which
is then updated

74

Index Maintenance

• B+tree index
– Amortized logarithmic cost of update
– Roughly linear in # of indexes
– Buffer conflicts

• Clustered B+trees index
– Restructuring table is expensive
– Update every secondary index
– Some DBMSes do not offer support (IOTs)

75

Materialized View Maintenance

• Materialized Views
– Simply propagate the row (or delete the row)
– Update all affected views and indexes

• Pre-filtered MVs
– Only update the row if it is relevant
– E.g., MV = σsalary > 75,000 (r)
– Only update if new faculty has salary > 75K

76

Materialized View Maintenance

• Pre-joined MVs
– Update all affected MVs
– Execute all necessary joins (may be expensive)
– Then, propagate the updates

• Pre-aggregated MVs
– For sum/avg can just add new value
– What about delete?
– What about max/min?

77

Update Batching

• Individual row-inserts are expensive
– Building a query plan per insert
– Caching is unreliable

• Batch the inserts
– B+-trees can be bulk-updated
– Similarly, MVs can be bulk-updated
– MyISAM and PostgreSQL batch internally

• Updates periodic in data warehouses

78

