CSC 553

Advanced Database Concepts Lecture 6

Alexander Rasin

College of CDM, DePaul University
May $2^{\text {nd }}, 2022$

Query Processing Steps

Optimization Fundamentals

- Relational algebra expressions can be substituted for other equivalent expressions
- E.g., $\sigma_{\text {salary<75000 }}\left(\pi_{\text {salary }}(\right.$ instructor $)$) is equivalent to $\pi_{\text {salary }}\left(\sigma_{\text {salary<75000 }}\right.$ (instructor))
- Each relational algebra operation (such as $\sigma_{\text {salary<75000 }}$) can be evaluated using several different algorithms
- Therefore, a full relational-algebra expression can be evaluated in many ways

Query Optimization Options

- Consider the relational algebra operator such as $\sigma_{\text {salary }}<75000$ (instructors) and the evaluation options
- Use an index on salary (if any) to find instructors who make less than 75000
- Perform a complete relation scan and discard instructors with salary ≥ 75000
- Annotated expression specifying the evaluation strategy is called evaluation-plan

Query Plans

The Intuition

- Alternative ways of evaluating a given query
- Equivalent expressions
- Different algorithms for each operation

Equivalence Rules

- Conjunctive selection operations can be deconstructed into a sequence of individual selections

$$
-\sigma_{\text {cond1 and cond2 }}(\mathrm{E})=\sigma_{\text {cond } 1}\left(\sigma_{\text {cond2 }}(\mathrm{E})\right)
$$

- Selection operations are commutative

$$
\left.-\sigma_{\mathrm{cond} 1}\left(\sigma_{\mathrm{cond} 2}(\mathrm{E})\right)=\sigma_{\mathrm{cond} 2}\left(\sigma_{\mathrm{cond} 1} 1 \mathrm{E}\right)\right)
$$

Equivalence Rules

- Only the last in a sequence of projection operations is needed, the others can be omitted

$$
-\Pi_{L 1}\left(\Pi_{L 2}\left(\ldots\left(\Pi_{L n}(E)\right)\right)\right)=\Pi_{L 1}(E)
$$

- Selections can be combined with Cartesian products and joins
$-\sigma_{\text {cond1 }}\left(E_{1} \times E_{2}\right)=E_{1} \bowtie_{\text {cond1 }} E_{2}$
$-\sigma_{\text {cond } 1}\left(\mathrm{E}_{1} \bowtie_{\text {cond2 }} \mathrm{E}_{2}\right)=\mathrm{E}_{1} \bowtie_{\text {cond1 and cond2 }} \mathrm{E}_{2}$

Equivalence Rules

- Joins are commutative
$-E_{1} \bowtie_{\text {cond } 1} E_{2}=E_{2} \bowtie_{\text {cond } 1} E_{1}$
- Natural joins are associative
$-\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)$
- (E1 join E2) join E3 = E1 join (E2 join E3)
- Joins are associative with a condition
$-\left(E_{1} \bowtie_{\text {cond } 1} E_{2}\right) \bowtie_{\text {cond2 and cond3 }} E_{3}=$
$\mathrm{E}_{1} \bowtie_{\text {cond1 and cond3 }}$ ($\mathrm{E}_{2} \bowtie_{\text {cond2 }} \mathrm{E}_{3}$)
where cond ${ }_{2}$ involves attributes from only E2/E3

Equivalence

 Rules

Equivalence Rules

- Set operations union and intersection are commutative

$$
\begin{aligned}
& -E_{1} \cup E_{2}=E_{2} \cup E_{1} \\
& -E_{1} \cap E_{2}=E_{2} \cap E_{1}
\end{aligned}
$$

- Set difference is not commutative
- Set union and intersection are associative

$$
\begin{aligned}
& -\left(E_{1} \cup E_{2}\right) \cup E_{3}=E_{1} \cup\left(E_{2} \cup E_{3}\right) \\
& -\left(E_{1} \cap E_{2}\right) \cap E_{3}=E_{1} \cap\left(E_{2} \cap E_{3}\right)
\end{aligned}
$$

Equivalence Rules

- Selection operation distributes over U and \cap and -
$-\sigma_{\text {cond }}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)=\sigma_{\text {cond }}\left(\mathrm{E}_{1}\right)-\sigma_{\text {cond }}\left(\mathrm{E}_{2}\right)$
- Similar for U and \cap
- Also
$-\sigma_{\text {cond }}\left(E_{1}-E_{2}\right)=\sigma_{\text {cond }}\left(E_{1}\right)-E_{2}$
- Similar for \cap in place of - , but not for U
- Projection operation distributes over union
$-\Pi_{L}\left(E_{1} \cup E_{2}\right)=\left(\Pi_{L}\left(E_{1}\right) \cup \Pi_{L}\left(E_{2}\right)\right)$

Transformation Example: Pushing Selections

- Query: find the names of instructors in the Music department along with the titles of the courses they teach
$-\prod_{\text {name, title }}\left(\sigma_{\text {dept_name=""Music"" }}\right.$ (instructor $\bowtie \quad$ (teaches \bowtie
$\prod_{\text {course_id,title }}($ course $\left.\left.)\right)\right)$)
- Transformation
$-\prod_{\text {name, title }}\left(\left(\sigma_{\text {dept_name=""Music" }}\right.\right.$ (instructor) $\bowtie \quad$ (teaches \bowtie
- Performing the selection as early as possible reduces the size of the relation to be joined

Multiple-Transformation Example

- Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses they taught
- $\prod_{\text {name, }}$ title $\left(\sigma_{\text {dept_name="Music" and year }=2009}\right.$ (instructor \bowtie (teaches $\bowtie \prod_{\text {course_id,title }}($ course))))
- Transform using join associativity
$-\prod_{\text {name, }}$ title $\left(\sigma_{\text {dept_name="Music" and year }=2009}\right.$ ((instructor \bowtie teaches) $\bowtie \prod_{\text {course_id,title }}($ course) $\left.)\right)$

Multiple-Transformation Example

- Result of $1^{\text {st }}$ transformation
$-\prod_{\text {name, }}$ title $\left(\sigma_{\text {dept_name="Music" and year }=2009 \quad \text { (instructor } \bowtie ~}^{\infty}\right.$ teaches) $\bowtie \prod_{\text {course_id,title }}$ (course)))
- Now transform the sub-expression
- $\sigma_{\text {dept_name="Music" }}$ and year $=2009$ (instructor \bowtie teaches) Into
$-\sigma_{\text {dept_name="Music" }}$ (instructor) $\bowtie \sigma_{\text {year }=2009}$ (teaches) Results in
- $\prod_{\text {name, title }}\left(\sigma_{\text {dept_name="Music" }}\right.$ (instructor) $\bowtie \sigma_{\text {year }}=2009$ (teaches)) $\bowtie \prod_{\text {course_id,title }}$ (course)))

Transformation: Pushing Projections

- Consider: $\prod_{\text {name, title }}\left(\sigma_{\text {dept }}\right.$ name="Mysic" (instructor) \bowtie teaches) $\bowtie \prod_{\text {course_id, title }}($ (course)) $)$)
- Computing $\sigma_{\text {dept_name="Music" }}($ instructor \bowtie teaches)

We obtain a relation with schema
(ID, name, dept_name, salary, course_id, sec_id, semester, year)

- Push projections using equivalence rules to eliminate unneeded attributes
- $\prod_{\text {name, title }}$ ($\Pi_{\text {name, corse_id }}\left(\sigma_{\text {dept_name="Music" }}\right.$ (instructor) \bowtie teaches) $\bowtie \prod_{\text {course_id, title }}($ coursese))))
- Performing projection as early as possible reduces the size of the relation to be joined

Multiple-Transformation Result

(a) Initial expression tree

(b) Tree after multiple transformations

Statistical Information for

Cost Estimation

- n_{r} : number of tuples in a relation r
- b_{r} : number of blocks in relation r
- I_{r} : size of a tuple of r
- f_{r} : blocking factor of r-i.e. the number of tuples that fit into one block
- $V(A, r)$: number of distinct values that appear in r for attribute A, same as the size of $\Pi_{A}(r)$
- If tuples of r are stored together physically in a file, then $b_{r}=\left\lceil n_{r} / f_{r}\right\rceil$

Estimating Size of a Projection

- $R(a, b, c)$
$-a, b=4 b y t e s, c=100$ bytes
- Header = 12 bytes, total of 120 bytes
- If block is 1024, can fit up to 8 tuples per block
- $\pi_{a+b=>x, c}(R)$
- 116 bytes instead, still only 8 tuples per block
- $\pi_{\mathrm{a}, \mathrm{b}}(\mathrm{R})$
- 20 bytes, 50 tuples per block

Selection Size Estimation

- $\sigma_{A=v}(r)$
$-T(R) / V(A, r):$
- number of records that will satisfy the selection (assuming uniform distribution)
- Equality condition on a key attribute
- size estimate $=1$

Selection Size Estimation

- $\sigma_{A \leq v}(r)$ case of ($\sigma_{A \geq v}(r)$ is symmetric)
- Let c denote the estimated number of tuples satisfying this condition
- If $\min (A, r)$ and $\max (A, r)$ are available in catalog
- $c=0$ if $v<\min (A, r)$
- $c=T(R) *((v-\min (A, r)) / \max (A, r)-\min (A, r))$
- If a histogram is available, refine the above estimate
- In absence of statistical information c is assumed to be $T(R) / 3$.

Size Estimation of Complex Selections

- The selectivity of a condition cond ${ }_{i}$ is the probability that the tuple in the relation r satisfies cond ${ }_{i}$
- If s_{i} is the number of satisfying tuples in r, the selectivity of cond is given by $s_{i} / T(R)$
- Conjunction: $\sigma_{\text {cond }_{1}}$ and cond ${ }_{2}$ and ... cond ${ }_{n}(r)$
- Assuming independence, estimate of tuples in the result is $\mathrm{n}_{\mathrm{r}}{ }^{*}\left(\mathrm{~s}_{1} * \mathrm{~s}_{2}{ }^{*} \ldots \mathrm{~s}_{\mathrm{n}}\right) /(\mathrm{T}(\mathrm{R}))^{\mathrm{n}}$

Size Estimation of Complex Selections

- Disjunction: $\sigma_{\text {cond }_{1} \text { or } \text { cond }_{2} \text { or ... cond }}^{n}$ (r)
- Estimated number of tuples is:

$$
\begin{aligned}
& -T(R) *\left(1-\left(1-s_{1} / T(R)\right) *\left(1-s_{2} / T(R)\right) * \ldots\left(1-s_{n} /\right.\right. \\
& T(R)))
\end{aligned}
$$

- Negation: $\sigma_{\text {not cond }}^{1}$ (r)
- Estimated number of tuples
$-T(R)-\operatorname{size}\left(\sigma_{\text {cond }_{1}}(r)\right)$

Estimating Join Cost

Join Operation Example

student \bowtie enrolled

- Catalog information:
$-n_{\text {student }}=5000$
$-f_{\text {student }}=50$ (meaning that $b_{\text {student }}=5000 / 50=100$)
$-\mathrm{n}_{\text {enrolled }}=10000$
$-f_{\text {enrolled }}=25\left(b_{\text {enrolled }}=10000 / 25=400\right)$
-V (ID, enrolled) $=2500$ which implies that on average each student is enrolled in 4 courses
- Attribute ID is a foreign key referencing student

$$
\mathrm{V}(\mathrm{ID}, \text { student })=?
$$

Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $T(R) \times T(S)$ tuples; each tuple occupies $\mathrm{s}_{\mathrm{r}}+\mathrm{s}_{\mathrm{s}}$ bytes
$-R$ is the set of attributes of r
$-S$ is the set of attributes for s
- If $R \cap S=[\varnothing]$, then $r \bowtie s$ is the same as $r \times s$
- If $R \cap S$ is a key for R, then a tuple of s will join with at most one tuple from r
- Therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s

Estimation of the Size of Joins

- If $R \cap S$ is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is exactly same as the number of tuples in s
- The case of $R \cap S$ being a foreign key referencing S is symmetric
- In the example query student \bowtie enrolled, ID in enrolled is a foreign key referencing student
- Hence, the result has exactly $\mathrm{n}_{\text {enrolled }}$ tuples which is 10000

Estimation of the Size of Joins

- If $R \cap S=[A]$ (set of attributes)
- If we assume that every tuple t in r produces tuples in $r \bowtie s$, the number of tuples in $r \bowtie s$ is estimated to be : $\left(n_{r}{ }^{*} n_{s}\right) / V(A, s)$ (If the reverse is true, the estimate is $\left(n_{r}{ }^{*} n_{s}\right) / V(A, r)$
- Different if $\mathrm{V}(\mathrm{A}, \mathrm{r}) \neq \mathrm{V}(\mathrm{A}, \mathrm{s})=>$ dangling tuples
- Lower of two estimates is probably more accurate
- Can improve on above with histograms...
- Use formula similar to above, for each cell of histograms of the two relations

Estimation of the Size of Joins

- Compute size estimates for student \bowtie enrolled (without using information about foreign keys)
$-\mathrm{V}($ ID, enrolled) $=2500$ and
-V (ID, student) $=5000$
- Two estimates are 5000 * 10000/2500 = 20K
- and 10000* 5000/5000 = 10K
- We choose the lower estimate, which in this case is the same as our earlier computation using foreign keys

Estimating Size of Set Operations

- Union
- Can be $T(R)$ and $T(R)+T(S)$
- Intersection
- Can be between 0 and T(S)
- Difference
- Can be between $T(R)$ and $T(R)-T(S)$
- Duplicate Elimination
- Smaller of $T(R) / 2$ and product of all $V\left(R, a_{i}\right)$

Histograms

- Histogram on attribute age of relation person

- Equi-width histograms
- Equi-height histograms

Join Ordering Example

- For all relations r_{1}, r_{2} and r_{3}
$-\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}=r_{1} \bowtie\left(r_{2} \bowtie r_{3}\right)$
(Join associativity)
- If $r_{2} \bowtie r_{3}$ is large and $r_{1} \bowtie r_{2}$ is small, we choose
$-\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}$
so that we compute and store a smaller temporary relation

Join Ordering Example

- Consider the expression
- $\prod_{\text {name, title }}$ ($\sigma_{\text {dept_name=""Music"" }}$ (instructor) \bowtie teaches) \bowtie $\prod_{\text {course_id, title }}$ (course))))
- Could compute teaches $\bowtie \prod_{\text {course_id, title }}$ (course) and then join result with
- $\sigma_{\text {dept_name="Music" }}$ (instructor)
but the result of the first join will likely be a large relation
- Only a small fraction of the university's instructors are likely to be from the Music department
- It is better to compute

$$
\sigma_{\text {dept_name="Music" }} \text { (instructor) } \bowtie \text { teaches first }
$$

Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows
- Apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
- Add newly generated expressions to the set of equivalent expressions
- Until no equivalent expressions are generated
- This approach is very expensive (space and time)

Implementing Transformation Based

 Optimization- Space requirements are reduced by sharing common sub expressions
- When E1 is generated from E2 by an equivalence rule, usually on top level is different, while subtrees below be shared using pointers
- E.g., when applying join commutativity

- Same sub-expressions may appear multiple times
- Detect duplicate sub-expressions and share one copy

Cost Estimation

- Cost of each operator computed
- Need statistics of input relations
- E.g., number of tuples, sizes of attributes
- Inputs can be results of sub-expressions
- Need to estimate statistics of expressions results
- To do so, we require additional statistics
- E.g., number of distinct values for an attribute

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
- Choosing the cheapest algorithm for each algorithm independently may not yield best overall algorithm
- E.g., merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation
- Nested-loop join may provide opportunity for pipelining
- Query optimizers incorporate elements of the following general approaches
- Search all the plans and choose the best plan in a cost-based fashion
- Use heuristics to choose a plan

Cost-Based Optimization

- Consider finding the best join-order for $r_{1} \bowtie r_{2} \bowtie r_{3} \bowtie \ldots r_{n}$
- There are (2(n-1))!/(n-1)! Different join orders for above expression
- With $n=7$, the number is 665,280
- With $\mathrm{n}=10$, the number is greater than 176 billion!
- No need to generate all the join orders:
- Using dynamic programming, the least-cost of join order for any subset of $\left(r_{1}, r_{2}, \ldots r_{n}\right\}$ is computed only once and stored for future use

Dynamic Programming Optimization

- To find the best join tree for a set of n relations
- Consider all possible plans of the form S_{1} join $\left(S-S_{1}\right)$, where S_{1} is any non-empty subset of S
- Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest of the $2^{n}-2$ alternatives
- Base case for recursion: single relation access plan
- Apply all selections on R_{i} using best choice of indices of R_{i}
- When plan for any subset is computed, store it and reuse it when it is required again, instead of re-computing it
- Dynamic programming

Left Deep Join Trees

- In left-deep join trees, the right-hand-side input for each join is a relation, rather than a result of another (intermediate) join

(a) Left-deep join tree

(b) Non-left-deep join tree

Interesting Sort Orders

- Consider the expression $\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}$
- Using common attribute A
- An interesting sort order is a particular sort order of tuples that could be useful for a later operation
- Using merge-join to compute $r_{1} \bowtie r_{2}$ may be costlier than hash join but generates result sorted on A
- Which, in turn, may make merge-join with r_{3} cheaper, which may reduce cost of join with r_{3} and minimizing the overall cost
- Sort order may also be useful for order by and for group by

Interesting Sort Orders

- Expression $\left(r_{1} \bowtie r_{2}\right) \bowtie r_{3}$
- At least 2 interesting sort orders, "none" and "sorted on A"
- Not sufficient to find the best join order for each subset of the set of n given relations
- Must find the best join order for each subset, for each interesting sort order
- Simple extension of earlier dynamic programming algorithms
- Usually, number of interesting orders is quite small and doesn't affect time/space complexity significantly

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
- Systems may use heuristics to reduce the number of choices that must be made in a cost-based fashion
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not always) improve execution performance
- Perform selection early (reduces number of tuples)
- Perform projection early (reduces the number of attributes)
- Perform most restriction selection and join operations (i.e. smallest result size) before other similar operations
- Some systems use only heuristics, other combine heuristics with partial cost-based optimization

Structure of Query Optimizers

- Many optimizers consider only left-deep join orders
- Plus heuristics to push selections and projections down the query tree
- Reduces optimization complexity and generates plans amenable to pipelined evaluation
- Heuristic optimization used in some versions of Oracle
- Repeatedly pick "best" relation to join next
- Starting from each of n starting points, pick best among these
- Intricacies of SQL complicate query optimization
- Nested sub-queries

Structure of Query Optimizers

- Some query optimizers integrate heuristics selection and the generation of alternative access plans
- Frequently used approach
- Heuristic rewriting of nested block structure and aggregation
- Followed by cost-based join-order optimization for each block
- Optimization cost budget to stop optimization early (if cost of plan is less than cost of optimization)
- Plan caching to reuse previous computed plan if query is resubmitted
- Even with different constants in query
- Even with the use of heuristics, cost-based query optimization imposes a substantial overhead
- Typically worth it for expensive queries
- Optimizers often use simple heuristics for very cheap queries, and perform exhaustive enumeration for more expensive queries.

Example Query

$$
\begin{array}{cc}
R(a, b) & S(b, c) \\
\hline T(R)=5000 & T(S)=2000 \\
V(R, a)=50 & \\
V(R, b)=100 & V(S, b)=200 \\
& V(S, c)=100
\end{array}
$$

Two Query Plans

Possible Joins for R,S,T,U

Stats and Singleton Sets

$$
\begin{array}{cccc}
R(a, b) & S(b, c) & T(c, d) & U(d, a) \\
\hline V(R, a)=100 & & & V(U, a)=50 \\
V(R, b)=200 & V(S, b)=100 & & \\
& V(S, c)=500 & V(T, c)=20 & \\
& & V(T, d)=50 & V(U, d)=1000
\end{array}
$$

	$\{R\}$	$\{S\}$	$\{T\}$	$\{U\}$
Size	1000	1000	1000	1000
Cost	0	0	0	0
Best plan	R	S	T	U

Pairs and Triples of Relations

	$\{R, S\}$	$\{R, T\}$	$\{R, U\}$	$\{S, T\}$	$\{S, U\}$	$\{T, U\}$
Size	5000	$1,000,000$	10,000	2000	$1,000,000$	1000
Cost	0	0	0	0	0	0
Best plan	$R \bowtie S$	$R \bowtie T$	$R \bowtie U$	$S \bowtie T$	$S \bowtie U$	$T \bowtie U$

	$\{R, S, T\}$	$\{R, S, U\}$	$\{R, T, U\}$	$\{S, T, U\}$
Size	10,000	50,000	10,000	2,000
Cost	2,000	5,000	1,000	1,000
Best plan	$(S \bowtie T) \bowtie R$	$(R \bowtie S) \bowtie U$	$(T \bowtie U) \bowtie R$	$(T \bowtie U) \bowtie S$

Grouping	Cost
$((S \bowtie T) \bowtie R) \bowtie U$	12,000
$((R \bowtie S) \bowtie U) \bowtie T$	55,000
$(T \bowtie U) \bowtie R) \bowtie S$	11,000
$(T \bowtie U) \bowtie S) \bowtie R$	3,000
$(T \bowtie U) \bowtie(R \bowtie S)$	6,000
$(R \bowtie T) \bowtie(S \bowtie U)$	$2,000,000$
$(S \bowtie T) \bowtie(R \bowtie U)$	12,000

Greedy Join \& Join Selectivity

- Choose the smallest join
- T凶U => (T凶U) $\bowtie S=>~((T \bowtie U) \bowtie S) \bowtie R ~$
- Selectivity = ratio between input and output
- Greedy approach picks the smallest selectivity

Physical Query Plan

- Choose algorithms to access data
- Index scan/table scan
- Join one pass/sort-join/INLJ/Hash join
- Materialized vs Pipelined
- Buffer space

Long Indexes

select name, department
from employees
where age in $(64,65)$ and salary <75000
and gender='female' and performance >5;

- Build a composite index on everything
- (gender, age, performance, salary)
- ...what about "or performance > 5"
- Downsides to the composite index approach?

Covering Indexes

select name, department
from employees
where age in $(64,65)$ and salary <75000 and gender='female' and performance >5;

- Use index (gender, age, salary, performance)
- Lookup the rows positions and sort
- Table could be really, really large
- Consider the following index
- (gender, age, salary, performance, name, department)

Covering Indexes

select name, department
from employees
where age in $(64,65)$ and salary <75000
and gender='female' and performance >5;

- Use the index
- (gender, age, salary, performance, name, department)
- Do not follow the pointers to the table!
- Read the requested values from the keys

Composite Indexes

- Composite/covering indexes keys are large
- What is the problem?
- Index might be very large
- Come back to that
- B+-Tree performance suffers
- Long keys
- E.g., 900 byte limit in SQL Server

Included Columns

- MS SQL Server
- Index:
- (gender, age, salary, performance, name, department)
- Alternatively
- Create index Name on Employees
(gender, age, salary, performance) include (name, department)
- Benefits of covering index w/out long key!

Prefix Suppression

- Oracle
- Consider our index with a long key
- gender, age, salary, performance, name, department
- (6 chars)+(3 digits)+(8 dig) + (2 dig) + (21 char) $)$ (10 char)
- Every key takes 50 bytes, and given 512-byte page
- What's the fan-out of the B+-tree?
- What about neighboring keys in the index?
- Values sorted in the leaves

Index Organized Tables (IOTs)

- Hide the data in the B-Tree!
- Oracle and MySQL
- Merge the structures
- Different from regular clustering
- Share the structure properties

Few-Valued Columns

- Few-valued columns partition (sorted) data into "buckets"
- E.g., gender column, performance, age
- Few-valued columns also create many opportunities for compression

Using Parts of a Composite Index

- Index: (gender, age, salary, performance)
select name, department
from employees
where age in (64,65) and salary < 75000 and gender='male' and performance >5;
select name, department
from employees
where age in $(64,65)$ and salary < 75000 and gender='male';
select name, department
from employees
where age in $(64,65)$ and gender='male';

Using Parts of a Composite Index

- Index: (gender, age, salary, performance)
select name, department
from employees
where age in $(64,65)$ and salary <75000 and gender='male' and performance >5;
select name, department
from employees
where salary < 75000 and gender='male' and performance > 5;
select name, department
from employees
where salary < 75000 and performance >5;

Skip-Scan

- Oracle
- Few-valued attributes as prefix
- Searches every sub-B+-tree to compensate
- SQL Server
- Adds predicates for few-valued attribute in prefix
- E.g., index on (year, salary)
- Convert "year > 2009" into "year in (2010,2011)"
- Statistics!

Bitmap Indexes

- An index lets us map values to rowIDs
- Age in $(64,65)$
- Row pointers $=(3,4,150,200,500,1000)$
- What if we just stored the per-value pointers?
- Age $=18=>(1,333,555,1001)$
$-\ldots$
- Age $=64=>(3,150,500,1000)$
- Age $=65=>(4,200)$

Bitmap Indexes

- Only works on few-valued columns
- Oracle and DB2
- Two ways of storing the same data
- List of RowIDs
- Dense 0,1 values

Views

- A view is a "virtual table"
create view dept_tot_salary(dept_name, tot_salary) as select dept_name, sum(salary)
from instructor
group by dept_name
- Does not do much to optimize queries
- Security, convenience, possibly query optimization
- Optimizer may reconstruct
- Oracle will even preserve views when instructor table is dropped (how?)

Materialized Views

- Views are nearly cost-free
- Automatically updated (with table changes)
- ... but not very useful
- Materialized Views
- Compute and store the query
- Use the view directly
- Space cost
- Maintenance cost

Dept_Name	SUM(Salary)
Comp. Sci.	10 M
Music	2 M
Economics	11 M
History	1 M
Comics Studies	500 K
Numerology	750 K

Using Materialized Views

- Materialized View (MV) is similar to a precomputed query
- Simpler language semantics
- Best case, $\mathrm{Q}_{\mathrm{a}}=\mathrm{MV}_{\mathrm{a}}$
- Maintenance and disk space limitations
- Otherwise a lot of work
- Pre-join
- Pre-filtered
- Pre-aggregated

Pre-joined Materialized View

- Consider $\mathrm{MV}_{\mathrm{a}}=\mathrm{r} \bowtie \mathrm{s}$
- Can be used to optimize query $r \bowtie s \bowtie t_{1} \bowtie t_{2}$
- If query plan costs are lower
- Can't use indexes on s, r with MV_{a}
$-M V_{a}$ needs the right key for join
- MV_{a} has indexes of its own
- In some DBs first (clustered) index materializes
- All table-indexing considerations apply to MVs

Pre-filtered Materialized View

- Consider $\mathrm{MV}_{\mathrm{b}}=\sigma_{\text {salary }}>75,000(\mathrm{r} \bowtie \mathrm{s})$
- Used to optimize query $\sigma_{\text {salary }}>75,000(r \bowtie s)$
- Or $\sigma_{\text {salary }>100,000}$ ($r \bowtie s$)
- But not $\sigma_{\text {salary }}>71,000(r \bowtie s)$
- Design a compromise
- Cannot afford all pre-computation
- Find the smallest suitable MV
- E.g., $\sigma_{\text {salary }}>70,000$ ($\mathrm{r} \bowtie \mathrm{s}$)

Pre-aggregated Materialized View

- $\mathrm{MV}_{\mathrm{b}}={ }_{\text {dept_name,gender }} \mathrm{G}_{\text {sum(salary) }}$ (instructors)
- Optimize query dept_name,gender $G_{\text {sum(salary) }}$ (instr)
- Or ${ }_{\text {dept_name }} G_{\text {sum(salary) }}$ (instructors)
- But not dept_name,position $G_{\text {sum(salary) }}$ (instructors)
- Design a compromise
- Find the best shared aggregation
- Data cubes

Materialized View Maintenance

- The task of keeping a materialized view up-todate with the underlying data is know as materialized view maintenance
- Materialized views using incremental view maintenance
- Changes do database relations are used to compute changes to the materialized view, which is then updated

Index Maintenance

- B+tree index
- Amortized logarithmic cost of update
- Roughly linear in \# of indexes
- Buffer conflicts
- Clustered B+trees index
- Restructuring table is expensive
- Update every secondary index
- Some DBMSes do not offer support (IOTs)

Materialized View Maintenance

- Materialized Views
- Simply propagate the row (or delete the row)
- Update all affected views and indexes
- Pre-filtered MVs
- Only update the row if it is relevant
- E.g., MV $=\sigma_{\text {salary }>75,000}(r)$
- Only update if new faculty has salary > 75K

Materialized View Maintenance

- Pre-joined MVs
- Update all affected MVs
- Execute all necessary joins (may be expensive)
- Then, propagate the updates
- Pre-aggregated MVs
- For sum/avg can just add new value
- What about delete?
- What about max/min?

Update Batching

- Individual row-inserts are expensive
- Building a query plan per insert
- Caching is unreliable
- Batch the inserts
- B+-trees can be bulk-updated
- Similarly, MVs can be bulk-updated
- MyISAM and PostgreSQL batch internally
- Updates periodic in data warehouses

