
CSC 553 
Advanced Database Concepts

Lecture 6

Alexander Rasin
College of CDM, DePaul University

May 2nd, 2022

1



Query Processing Steps

SQL Query
Parser and 
translator

Relational 
algebra expr.

Optimizer

Execution
Plan

Evaluation 
Engine

Query 
Output

DATA

Statistics 
about 
data

2



Optimization Fundamentals

• Relational algebra expressions can be 
substituted for other equivalent expressions
– E.g., σ salary<75000(πsalary(instructor)) is equivalent    

to     πsalary(σsalary<75000(instructor))

• Each relational algebra operation (such as 
σsalary<75000) can be evaluated using several 
different algorithms
– Therefore, a full relational-algebra expression can 

be evaluated in many ways
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Query Optimization Options

• Consider the relational algebra operator such 
as σsalary<75000(instructors) and the evaluation 
options
– Use an index on salary (if any) to find instructors 

who make less than 75000
– Perform a complete relation scan and discard 

instructors with salary ≥ 75000

• Annotated expression specifying the 
evaluation strategy is called evaluation-plan
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Query Plans
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The Intuition
• Alternative ways of evaluating a given query
– Equivalent expressions
– Different algorithms for each operation

6



Equivalence Rules
• Conjunctive selection operations can be 

deconstructed into a sequence of individual 
selections
– σcond1 and cond2(E) = σcond1 (σcond2(E))

• Selection operations are commutative
– σcond1 (σcond2(E)) = σcond2 (σcond1(E))
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Equivalence Rules
• Only the last in a sequence of projection 

operations is needed, the others can be 
omitted
– ∏L1(∏L2( …(∏Ln(E)))) = ∏L1(E)

• Selections can be combined with Cartesian 
products and joins
– σcond1(E1 X E2) = E1 ⋈cond1 E2

– σcond1(E1 ⋈cond2 E2) = E1 ⋈cond1 and cond2 E2
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Equivalence Rules
• Joins are commutative
– E1 ⋈cond1 E2 = E2 ⋈cond1 E1

• Natural joins are associative
– (E1 ⋈ E2) ⋈ E3 = E1 ⋈ (E2 ⋈ E3)
– (E1 join E2) join E3 = E1 join (E2 join E3)

• Joins are associative with a condition
– (E1 ⋈cond1 E2) ⋈cond2 and cond3 E3 = 

E1 ⋈cond1 and cond3 (E2 ⋈cond2 E3)
where cond2 involves attributes from only E2/E3
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Equivalence 
Rules
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Equivalence Rules

• Set operations union and intersection are 
commutative
– E1 U E2 = E2 U E1

– E1 ∩ E2 = E2 ∩ E1

– Set difference is not commutative

• Set union and intersection are associative
– (E1 U E2) U E3 = E1 U (E2 U E3)
– (E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)
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Equivalence Rules
• Selection operation distributes over U and ∩

and –
– σcond(E1 – E2) = σcond (E1) – σcond (E2)
– Similar for U and ∩

• Also
– σcond (E1 – E2) = σcond (E1) – E2

– Similar for ∩ in place of –, but not for U
• Projection operation distributes over union
– ∏L(E1 U E2) = (∏L(E1) U ∏L (E2))
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Transformation Example: Pushing Selections
• Query: find the names of instructors in the Music 

department along with the titles of the courses 
they teach
– ∏name, title (σdept_name=“Music” (instructor ⋈ (teaches ⋈

∏course_id,title (course))))
• Transformation
– ∏name, title ((σdept_name=“Music” (instructor) ⋈ (teaches ⋈

∏course_id,title (course)))
• Performing the selection as early as possible 

reduces the size of the relation to be joined
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Multiple-Transformation Example
• Find the names of all instructors in the Music 

department who have taught a course in 2009, 
along with the titles of the courses they taught
– ∏name, title (σdept_name=“Music” and year = 2009

(instructor ⋈ (teaches ⋈ ∏course_id,title (course))))

• Transform using join associativity
– ∏name, title (σdept_name=“Music” and year = 2009           

((instructor ⋈ teaches) ⋈ ∏course_id,title (course)))
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Multiple-Transformation Example
• Result of 1st transformation
– ∏name, title (σdept_name=“Music” and year = 2009           (instructor ⋈

teaches) ⋈ ∏course_id,title (course)))
• Now transform the sub-expression
– σdept_name=“Music” and year = 2009(instructor ⋈ teaches)
Into 
– σdept_name=“Music” (instructor)⋈ σ year = 2009 (teaches)
Results in
– ∏name, title (σdept_name=“Music” (instructor)⋈ σ year = 2009 

(teaches)) ⋈ ∏course_id,title (course)))
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Transformation: Pushing Projections
• Consider: ∏name, title (σdept_name=“Music” (instructor)⋈

teaches) ⋈ ∏course_id,title (course))))
• Computing σdept_name=“Music”(instructor⋈teaches)

We obtain a relation with schema
(ID, name, dept_name, salary, course_id, sec_id, semester, year)
– Push projections using equivalence rules to eliminate 

unneeded attributes
– ∏name, title (∏name, corse_id (σdept_name=“Music” (instructor)⋈

teaches) ⋈ ∏course_id,title (course))))
– Performing projection as early as possible reduces the 

size of the relation to be joined
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Multiple-Transformation Result
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Statistical Information for           
Cost Estimation

• nr: number of tuples in a relation r
• br: number of blocks in relation r
• Ir: size of a tuple of r
• fr: blocking factor of r – i.e. the number of tuples 

that fit into one block
• V(A, r): number of distinct values that appear in r 

for attribute A, same as the size of ∏A(r)
• If tuples of r are stored together physically in a 

file, then  br = ┌nr/fr
┐
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Estimating Size of a Projection

• R(a, b, c)
– a, b = 4bytes, c = 100bytes
– Header = 12 bytes, total of 120 bytes
– If block is 1024, can fit up to 8 tuples per block

• πa+b=>x,c(R)
– 116 bytes instead, still only 8 tuples per block

• πa,b (R)
– 20 bytes, 50 tuples per block



Selection Size Estimation

• σ A=v (r)
– T(R) /V(A,r): 
• number of records that will satisfy the selection 

(assuming uniform distribution)

– Equality condition on a key attribute
• size estimate = 1
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Selection Size Estimation

• σ A≤v (r) case of (σ A≥v (r) is symmetric)
– Let c denote the estimated number of tuples 

satisfying this condition
– If min(A,r) and max(A, r) are available in catalog
• c = 0 if v < min(A, r)
• c = T(R) * ((v-min(A,r)) / max(A, r) – min(A, r))
• If a histogram is available, refine the above estimate
• In absence of statistical information c is assumed to be 

T(R) /3.
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Size Estimation of Complex Selections

• The selectivity of a condition condi is the 
probability that the tuple in the relation r 
satisfies condi

– If si is the number of satisfying tuples in r, the 
selectivity of condi is given by si/ T(R)

• Conjunction: σ cond1 and cond2 and … condn
(r)

– Assuming independence, estimate of tuples in the 
result is nr * (s1 * s2 * … sn) / (T(R))n
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Size Estimation of Complex Selections

• Disjunction: σ cond1 or cond2 or … condn
(r)

– Estimated number of tuples is:
– T(R) * (1 - (1 - s1/T(R)) * (1 - s2/ T(R)) * … (1 - sn/ 

T(R)))

• Negation: σ not cond1
(r)

– Estimated number of tuples
– T(R) – size (σ cond1

(r))
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Estimating Join Cost
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Join Operation Example
student ⋈ enrolled

• Catalog information:
– nstudent = 5000
– fstudent = 50 (meaning that bstudent = 5000/50 = 100)
– nenrolled = 10000
– fenrolled = 25 (benrolled = 10000/25 = 400)
– V(ID, enrolled) = 2500 which implies that on 

average each student is enrolled in 4 courses
• Attribute ID is a foreign key referencing student
• V(ID, student) = 5000 (primary key!)
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Estimation of the Size of Joins

• The Cartesian product r x s contains T(R)xT(S)
tuples; each tuple occupies sr+ss bytes
– R is the set of attributes of r
– S is the set of attributes for s

• If R ∩ S = [Ø], then r ⋈ s is the same as r x s
• If R ∩ S is a key for R, then a tuple of s will join 

with at most one tuple from r
– Therefore, the number of tuples in r ⋈ s is no 

greater than the number of tuples in s
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Estimation of the Size of Joins

• If R ∩ S is a foreign key in S referencing R, then 
the number of tuples in r ⋈ s is exactly same 
as the number of tuples in s
– The case of R ∩ S being a foreign key referencing S 

is symmetric

• In the example query student ⋈ enrolled, ID in 
enrolled is a foreign key referencing student
– Hence, the result has exactly nenrolled tuples which 

is 10000

27



Estimation of the Size of Joins
• If R ∩ S = [A] (set of attributes) 
• If we assume that every tuple t in r produces 

tuples in r ⋈ s, the number of tuples in r ⋈ s is 
estimated to be : (nr * ns) / V(A, s)
(If the reverse is true, the estimate is (nr*ns) / V(A, r)

• Different if V(A, r) ≠ V(A, s) => dangling tuples
– Lower of two estimates is probably more accurate

• Can improve on above with histograms…
– Use formula similar to above, for each cell of 

histograms of the two relations
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Estimation of the Size of Joins

• Compute size estimates for student ⋈ enrolled 
(without using information about foreign keys)
– V(ID, enrolled) = 2500 and
– V(ID, student) = 5000
– Two estimates are 5000 * 10000/2500 = 20K
– and 10000* 5000/5000 = 10K
– We choose the lower estimate, which in this case 

is the same as our earlier computation using 
foreign keys
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Estimating Size of Set Operations

• Union
– Can be T(R) and T(R)+T(S)

• Intersection
– Can be between 0 and T(S)

• Difference
– Can be between T(R) and T(R)-T(S)

• Duplicate Elimination
– Smaller of T(R)/2 and product of all V(R, ai)



Histograms
• Histogram on attribute age of relation person

– Equi-width histograms
– Equi-height histograms
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Join Ordering Example

• For all relations r1, r2 and r3

– (r1 ⋈ r2) ⋈ r3 = r1 ⋈ (r2 ⋈ r3)

(Join associativity)

• If r2 ⋈ r3 is large and r1 ⋈ r2 is small, we 
choose
– (r1 ⋈ r2) ⋈ r3

so that we compute and store a smaller temporary 
relation
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Join Ordering Example
• Consider the expression
– ∏name, title (σdept_name=“Music” (instructor)⋈ teaches) ⋈

∏course_id,title (course))))
• Could compute teaches ⋈ ∏course_id,title (course) and 

then join result with
– σdept_name=“Music” (instructor)
but the result of the first join will likely be a large relation

• Only a small fraction of the university’s instructors 
are likely to be from the Music department
– It is better to compute

σdept_name=“Music” (instructor) ⋈ teaches   first
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Enumeration of Equivalent Expressions
• Query optimizers use equivalence rules to systematically 

generate expressions equivalent to the given expression
• Can generate all equivalent expressions as follows
– Apply all applicable equivalence rules on every sub-

expression of every equivalent expression found so far
– Add newly generated expressions to the set of 

equivalent expressions
– Until no equivalent expressions are generated

• This approach is very expensive (space and time)
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Implementing Transformation Based 
Optimization

• Space requirements are reduced by sharing 
common sub expressions
– When E1 is generated from E2 by an equivalence 

rule, usually on top level is different, while sub-
trees below be shared using pointers
• E.g., when applying 
join commutativity

• Same sub-expressions may appear multiple times
– Detect duplicate sub-expressions and share one copy
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Cost Estimation

• Cost of each operator computed
– Need statistics of input relations
• E.g., number of tuples, sizes of attributes

• Inputs can be results of sub-expressions
– Need to estimate statistics of expressions results
– To do so, we require additional statistics
• E.g., number of distinct values for an attribute
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Choice of Evaluation Plans
• Must consider the interaction of evaluation techniques 

when choosing evaluation plans
– Choosing the cheapest algorithm for each algorithm 

independently may not yield best overall algorithm
• E.g., merge-join may be costlier than hash-join, but may provide a 

sorted output which reduces the cost for an outer level aggregation
• Nested-loop join may provide opportunity for pipelining

• Query optimizers incorporate elements of the following 
general approaches
– Search all the plans and choose the best plan in a cost-based 

fashion
– Use heuristics to choose a plan
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Cost-Based Optimization
• Consider finding the best join-order for                 

r1 ⋈ r2 ⋈ r3 ⋈ … rn

• There are (2(n-1))!/(n-1)! Different join orders for 
above expression
– With n = 7, the number is 665,280
– With n=10, the number is greater than 176 billion!

• No need to generate all the join orders:
– Using dynamic programming, the least-cost of join 

order for any subset of (r1, r2, …rn} is computed only 
once and stored for future use
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Dynamic Programming Optimization

• To find the best join tree for a set of n relations
– Consider all possible plans of the form S1 join (S-S1), where 

S1 is any non-empty subset of S
– Recursively compute costs for joining subsets of S to find 

the cost of each plan.  Choose the cheapest of the 2n – 2 
alternatives

– Base case for recursion: single relation access plan
• Apply all selections on Ri using best choice of indices of Ri

– When plan for any subset is computed, store it and reuse it 
when it is required again, instead of re-computing it
• Dynamic programming
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Left Deep Join Trees
• In left-deep join trees, the right-hand-side 

input for each join is a relation, rather than a 
result of another (intermediate) join
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Interesting Sort Orders

• Consider the expression (r1 ⋈ r2) ⋈ r3
– Using common attribute A

• An interesting sort order is a particular sort order of 
tuples that could be useful for a later operation
– Using merge-join to compute r1 ⋈ r2 may be costlier than 

hash join but generates result sorted on A
– Which, in turn, may make merge-join with r3 cheaper, which 

may reduce cost of join with r3 and minimizing the overall 
cost

– Sort order may also be useful for order by and for group by
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Interesting Sort Orders

• Expression (r1 ⋈ r2) ⋈ r3
– At least 2 interesting sort orders, “none” and “sorted on A”

• Not sufficient to find the best join order for each 
subset of the set of n given relations
– Must find the best join order for each subset, for each 

interesting sort order
– Simple extension of earlier dynamic programming 

algorithms
– Usually, number of interesting orders is quite small and 

doesn’t affect time/space complexity significantly
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Heuristic Optimization
• Cost-based optimization is expensive, even with dynamic 

programming
• Systems may use heuristics to reduce the number of choices 

that must be made in a cost-based fashion
• Heuristic optimization transforms the query-tree by using a 

set of rules that typically (but not always) improve execution 
performance
– Perform selection early (reduces number of tuples)
– Perform projection early (reduces the number of attributes)
– Perform most restriction selection and join operations (i.e. smallest 

result size) before other similar operations
– Some systems use only heuristics, other combine heuristics with 

partial cost-based optimization
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Structure of Query Optimizers
• Many optimizers consider only left-deep join orders
– Plus heuristics to push selections and projections down the 

query tree
– Reduces optimization complexity and generates plans 

amenable to pipelined evaluation
• Heuristic optimization used in some versions of 

Oracle
– Repeatedly pick “best” relation to join next

• Starting from each of n starting points, pick best among these

• Intricacies of SQL complicate query optimization
– Nested sub-queries
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Structure of Query Optimizers
• Some query optimizers integrate heuristics selection and the 

generation of alternative access plans
– Frequently used approach

• Heuristic rewriting of nested block structure and aggregation
• Followed by cost-based join-order optimization for each block

– Optimization cost budget to stop optimization early (if cost of plan is less 
than cost of optimization)

– Plan caching to reuse previous computed plan if query is resubmitted
• Even with different constants in query

• Even with the use of heuristics, cost-based query optimization 
imposes a substantial overhead
– Typically worth it for expensive queries
– Optimizers often use simple heuristics for very cheap queries, and perform 

exhaustive enumeration for more expensive queries.
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Example Query



Two Query Plans



Possible Joins for R,S,T,U



Stats and Singleton Sets



Pairs and Triples of Relations





Greedy Join & Join Selectivity

• Choose the smallest join
• T⨝U => (T⨝U) ⨝S=> ((T⨝U)⨝S)⨝R
• Selectivity = ratio between input and output
• Greedy approach picks the smallest selectivity



Physical Query Plan

• Choose algorithms to access data
– Index scan/table scan
– Join one pass/sort-join/INLJ/Hash join

• Materialized vs Pipelined
– Buffer space



Long Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000                    
and gender=‘female’ and performance > 5;

• Build a composite index on everything
– (gender, age, performance, salary)

• …what about “or performance > 5”
• Downsides to the composite index approach?
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Covering Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000                    
and gender=‘female’ and performance > 5;
• Use index (gender, age, salary, performance)
– Lookup the rows positions and sort
– Table could be really, really large

• Consider the following index
– (gender, age, salary, performance, name, department)
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Covering Indexes

select name, department
from employees
where age in (64, 65) and salary < 75000                    
and gender=‘female’ and performance > 5;

• Use the index
– (gender, age, salary, performance, name, department)
– Do not follow the pointers to the table!
– Read the requested values from the keys
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Composite Indexes

• Composite/covering indexes keys are large
• What is the problem?
• Index might be very large 
– Come back to that

• B+-Tree performance suffers
– Long keys
– E.g., 900 byte limit in SQL Server
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Included Columns

• MS SQL Server
• Index:
• (gender, age, salary, performance, name, department)

• Alternatively
• Create index Name on Employees                   

(gender, age, salary, performance)                                
include (name, department)

• Benefits of covering index w/out long key!
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Prefix Suppression

• Oracle
• Consider our index with a long key
– gender, age, salary, performance, name, department
– (6 chars)+(3 digits)+(8 dig) + (2 dig) + (21 char)+(10 char)
– Every key takes 50 bytes, and given 512-byte page

• What’s the fan-out of the B+-tree?

• What about neighboring keys in the index?
– Values sorted in the leaves
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Index Organized Tables (IOTs)

• Hide the data in the B-Tree!
– Oracle and MySQL

• Merge the structures
– Different from regular clustering
– Share the structure properties
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Few-Valued Columns

• Few-valued columns partition (sorted) data 
into “buckets”
– E.g., gender column, performance, age

• Few-valued columns also create many 
opportunities for compression
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Using Parts of a Composite Index
• Index: (gender, age, salary, performance)
select name, department
from employees
where age in (64, 65) and salary < 75000                                      
and gender=‘male’   and performance > 5;

select name, department
from employees
where age in (64, 65) and salary < 75000  and gender=‘male’;

select name, department
from employees
where age in (64, 65) and gender=‘male’;
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Using Parts of a Composite Index
• Index: (gender, age, salary, performance)
select name, department
from employees
where age in (64, 65) and salary < 75000                                      
and gender=‘male’   and performance > 5;

select name, department
from employees
where salary < 75000  and gender=‘male’ and performance > 5;

select name, department
from employees
where salary < 75000 and performance > 5;
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Skip-Scan

• Oracle
– Few-valued attributes as prefix
– Searches every sub-B+-tree to compensate

• SQL Server
– Adds predicates for few-valued attribute in prefix
– E.g., index on (year, salary)
– Convert “year > 2009” into “year in (2010,2011)”
• Statistics!
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Bitmap Indexes

• An index lets us map values to rowIDs
– Age in (64,65)
– Row pointers = (3,4,150,200,500,1000)

• What if we just stored the per-value pointers?
– Age = 18 => (1, 333, 555, 1001)
– …
– Age = 64 => (3, 150, 500, 1000)
– Age = 65 => (4, 200)
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Bitmap Indexes

• Only works on few-valued columns
• Oracle and DB2
• Two ways of storing the same data
– List of RowIDs
– Dense 0,1 values
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Views
• A view is a “virtual table”

create view dept_tot_salary(dept_name, tot_salary) as  
select dept_name, sum(salary)

from instructor
group by dept_name

• Does not do much to optimize queries
– Security, convenience, possibly query optimization

• Optimizer may reconstruct

• Oracle will even preserve views when instructor 
table is dropped (how?)
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Materialized Views

• Views are nearly cost-free
• Automatically updated (with table changes)
• … but not very useful 
• Materialized Views
• Compute and store the query
• Use the view directly
• Space cost
• Maintenance cost
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Dept_Name SUM(Salary)

Comp. Sci. 10M

Music 2M

Economics 11M

History 1M

Comics Studies 500K

Numerology 750K



Using Materialized Views

• Materialized View (MV) is similar to a pre-
computed query
– Simpler language semantics

• Best case, Qa = MVa
– Maintenance and disk space limitations

• Otherwise a lot of work
– Pre-join
– Pre-filtered
– Pre-aggregated
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Pre-joined Materialized View

• Consider MVa = r ⋈ s
• Can be used to optimize query r ⋈ s ⋈ t1 ⋈ t2

– If query plan costs are lower
• Can’t use indexes on s,r with MVa

– MVa needs the right key for join

• MVa has indexes of its own
– In some DBs first (clustered) index materializes
– All table-indexing considerations apply to MVs
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Pre-filtered Materialized View

• Consider MVb = σsalary > 75,000 (r ⋈ s)
– Used to optimize query σsalary > 75,000 (r ⋈ s)
– Or σsalary > 100,000 (r ⋈ s)
– But not σsalary > 71,000 (r ⋈ s)

• Design a compromise
– Cannot afford all pre-computation
– Find the smallest suitable MV
• E.g., σsalary > 70,000 (r ⋈ s)
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Pre-aggregated Materialized View

• MVb = dept_name,genderGsum(salary)(instructors)
– Optimize query dept_name,genderGsum(salary)(instr)
– Or dept_nameGsum(salary)(instructors)
– But not dept_name,positionGsum(salary)(instructors)

• Design a compromise
– Find the best shared aggregation
– Data cubes
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Materialized View Maintenance

• The task of keeping a materialized view up-to-
date with the underlying data is know as 
materialized view maintenance

• Materialized views using incremental view 
maintenance
– Changes do database relations are used to 

compute changes to the materialized view, which 
is then updated
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Index Maintenance

• B+tree index
– Amortized logarithmic cost of update
– Roughly linear in # of indexes
– Buffer conflicts

• Clustered B+trees index
– Restructuring table is expensive
– Update every secondary index
– Some DBMSes do not offer support (IOTs)
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Materialized View Maintenance

• Materialized Views
– Simply propagate the row (or delete the row)
– Update all affected views and indexes

• Pre-filtered MVs
– Only update the row if it is relevant
– E.g., MV = σsalary > 75,000 (r)
– Only update if new faculty has salary > 75K
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Materialized View Maintenance

• Pre-joined MVs
– Update all affected MVs
– Execute all necessary joins (may be expensive)
– Then, propagate the updates

• Pre-aggregated MVs
– For sum/avg can just add new value
– What about delete?
– What about max/min?
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Update Batching

• Individual row-inserts are expensive
– Building a query plan per insert
– Caching is unreliable

• Batch the inserts
– B+-trees can be bulk-updated
– Similarly, MVs can be bulk-updated
– MyISAM and PostgreSQL batch internally

• Updates periodic in data warehouses
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