CSC553 Advanced Database Concepts

Tanu Malik
School of Computing
DePaul University

Last time

- Index structures
- Hash-based indexes
- B+ trees

Types of Operator Algorithms

One-pass algorithms

- Reading data from disk only once.
- One argument to fit in memory except select and project operators

Two-pass algorithms

- Data too large to fit in main memory
- Reading data a first time from disk, processing it is some way, then reading again from disk.

Index-based algorithms

Use indexes to reduce the amount of data fetched.

Cost Parameters

- Cost = total number of I/Os
- This is a simplification that ignores CPU, network
- Parameters:
 - B(R) = # of blocks (i.e., pages) for relation R
 - T(R) = # of tuples in relation R
 - V(R, a) = # of distinct values of attribute a
 - When a is a key, V(R,a) = T(R)
 - When a is not a key, V(R,a) can be anything < T(R)

Cost Convention

- Cost = the cost of reading operands from disk
- Cost of writing the final result to disk is not included; need to count it separately when applicable

- Assumption: Arguments to operator are on disk but result is in main memory.
 - If final answer, then result is written to disk and the cost of doing so depends on the size of the answer and not how it was computed.

Join Algorithms

- Hash join : B(R) + B(S)
- Nested loop join
- Sort-merge join

Hash Join T1 ⋈ T2

T1

1	'Bob'	'Seattle'
2	'Ela'	'Everett'

3	Î	'Kent'
4	'Joe'	'Seattle'

T2

2	'Blue'	123	
4	'Prem'	432	

4	'Prem'	343
5	'GrpH'	554

T1 ⋈ T2

M = 15 pages		

Scan T1 (open())

M = 15 pages h = pid % 5

Scan T2 and probe into hash table (next())

Scan T2 and probe into hash table (next())

Scan T2 and probe into hash table (next())

Join Algorithms

- Hash join : B(R) + B(S)
- Nested loop join: B(R) + B(S) *T(R); B(R)+ B(S)B(R)
- Sort-merge join

Nested Loop Join

- Tuple-based nested loop R ⋈ S
- R is the outer relation, S is the inner relation

for each tuple t1 in R do
for each tuple t2 in S do
if t1 and t2 join then output (t1,t2)

 $\S Cost: B(R) + T(R) B(S)$

§ Multiple-pass since S is read many times

Block refinement

for each block of tuples r in R do
for each block of tuples s in S do
for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)

Keep smaller relation between R and S as the outer one

Group/Chunk-Block refinement

- for each group of M-1 blocks r in R do
 - for each block of tuples s in S do
 - for all pairs of tuples t1 in r, t2 in s
 - if t1 and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)/(M-1)

Key idea: Remember that the fewer times we read in S, the better. Utilize the buffer more by reading several pages of R more.

Group-based NLJ

And so on till one scan of S is done.

Any further improvements?

- Index-based NLJ
- An index on T2 that is on the appropriate field (i.e. the field we are joining on), it can be very fast to look up matches.

• Cost: The I/O cost is B(R) + T(R)*(cost to look up matching records in S).

Sort-merge Join

- Sort-merge join: R ⋈ S
 - Scan R and sort in main memory
 - Scan S and sort in main memory
 - Merge R and S
- Cost: sort(R) + sort(S) + B(R) + B(S)
- One pass algorithm when B(S) + B(R) <= M
- Typically, this is NOT a one pass algorithm.

Scan T1 and sort in memory

Scan T2 and sort in memory

Merge T1 and T2

Merge T1 and T2

Keep merging till on relation ends

Algorithm

- We begin at the start of R and S and advance one or the other until we get to a match
 - If $r_i < s_j$, advance R; else if $r_i > s_j$, advance S the idea is to advance the lesser of the two until we get a match
- Let's say pair (r_i, s_j) is match. Mark this spot in S as marked(S) and check each subsequent record in S $(s_j, s_{j+1}, s_{j+2}, etc)$ until we find something that is not a match (i.e. read in all records in S that match to r_i).
- Go to the next record in R and go back to the marked spot in S and begin again at step 1 (except instead of beginning at the start of R and the start of S, do it at the indices we just indicated)

Example

28 <31; advance S

	R		R S		
sid	snam	e	sid	bid	
22	dustir	า	28	103	
28	yuppy	/	28	104	
⇒ 31	lubbe	r	⇒ 31	101	\bigoplus
31	lubbe	r2	31	102	
44	guppy	/	42	142	
57	rusty		58	107	
	sid 28 28	sname yuppy yuppy	bid 103 104		
	31	lubber	101		

Mark 31 (black arrow); Output match

Advance S Output match

Advance S
Mismatch
Reset S
Advance R
Another match

Advance S
Output Match

Two-Pass Algorithms

- Fastest algorithm seen so far is one-pass hash join
- What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
 - Sorting
 - Hashing

External Sort Merge

• Phase one: load M blocks in memory, sort, send to disk, repeat

Phase one: load M blocks in memory, sort, send to disk, repeat

External Sort Merge---M block long runs

Phase one: load M blocks in memory, sort, send to disk, repeat

Phase one: load M blocks in memory, sort, send to disk, repeat

External Sort Merge

- Phase two: merge M runs into a bigger run
- In effect Merge M − 1 runs into a new run and 1 for output buffer.

External Sort Merge

- A run in a sequence is an increasing subsequence
- What are the runs?2, 4, 99, 103, 88, 77, 3, 79, 100, 2, 50

External Sort-Merge: M-way Merge

- Use M blocks of memory to buffer (sorted) input runs. Reserve 1 block to buffer output
- Repeat until done
 - Select next record from one of the buffer pages
 - Write that record to output buffer (if the output buffer is full, write the page to disk)
 - Delete the processed record from the buffer
 - If buffer is empty, read the next block (in that run)

- Merging three runs to produce a longer run:
- 0, 14, 33, 88, 92, 192, 322
- **2**, 4, 7, 43, 78, 103, 523
- **1**, 6, 9, 12, 33, 52, 88, 320
- Output: 0

- Merging three runs to produce a longer run:
- 0, 14, 33, 88, 92, 192, 322
- **2**, 4, 7, 43, 78, 103, 523
- **1**, 6, 9, 12, 33, 52, 88, 320
- Output: 0,1

- Merging three runs to produce a longer run:
- 0, 14, 33, 88, 92, 192, 322
- **2**, 4, 7, 43, 78, 103, 523
- 1, 6, 9, 12, 33, 52, 88, 320
- Output: 0,1,2

- Merging three runs to produce a longer run:
- 0, 14, 33, 88, 92, 192, 322
- 2, 4, 7, 43, 78, 103, 523
- 1, 6, 9, 12, 33, 52, 88, 320
- Output: 0,1,2,4

- Merging three runs to produce a longer run:
- 0, 14, 33, 88, 92, 192, 322
- 2, 4, 7, 43, 78, 103, 523
- 1, 6, 9, 12, 33, 52, 88, 320
- Output: 0,1,2,4,6,7

Short video to watch

https://www.youtube.com/watch?v=1dtlutGlSsQ

• Sort table T = 1960 pages with 8 available buffers

Questions

- How many sorted runs will be produced after each pass?
- How many pages will be in each sorted run for each pass?
- How many I/Os does the entire sorting operation take?

• Sort table T = 1960 pages with 8 available buffers

Questions

• How many sorted runs will be produced after each pass?

1st pass = 1960/8 = 245 sorted runs of 8 pages each

Subsequent passes 7 pages each.

 2^{nd} pass = 245/7 = 35 sorted runs of 8*7 = 56 pages

 3^{rd} pass = 35/7 = 5 sorted runs of 56*7 = 392 pages

4th pass = can merge all remaining sorted runs since less than 7 sorted runs Produces one sorted run of 1960 pages.

• Sort table T = 1960 pages with 8 available buffers

Questions

- How many sorted runs will be produced after each pass?
 - 245, 35, 5, 1
- How many pages will be in each sorted run for each pass?
 - 8, 56, 392, 1960
- How many I/Os does the entire sorting operation take?
 - Easch pass takes 2*N I/Os = 4*2*1960 = 15,680

Approximation to Cost

- Approximately: Read+ write+ read = 3B(R) in each pass (without storing final output to disk)
 - B(R) to read B blocks
 - B (R) to write sorted sublists
 - Again read all sorted sublists.

How large a table can be sorted?

- Observation 1: For external sort-merge to work there must not be more than M-1 runs.
- Observation 2: Each run is M blocks long.

- Suppose R fits in B blocks, then M* (M-1) >= B
- If approx. $B \le M^2$ then we are done

Size of R

- Assumption: B(R) <= M²
 - How large can R be?
 - Suppose blocks are $64K = 2^{16}$ bytes and main memory is $1GB = 2^{30}$ bytes
 - M = ?
 - $M^2 = ?$
 - Size of Relation = ?

Using Ext. Sort Merge in Join

• How?

Using Ext. Sort Merge in Join

- Step 1a: generate initial runs for R (X,Y)
- Step 1b: generate initial runs for S (Y,Z)
- Step 2: merge and join
 - Either merge first and then join
 - Or merge & join at the same time
- Repeat
- Find the least value y of Y that is currently in front of R and S.
- If y does not appear at the front of other relation, then remove the tuple with y
- Else, identify all the tuples from both relations having sort key y. If necessary, read blocks and R and S until no further blocks. Maximum buffers available = M.
- Output all tuples.

Setup: Want to join R and S

Relation R has 10 pages with 2 tuples per page Relation S has 8 pages with 2 tuples per page

Values shown are values of join attribute for each given tuple

Step 1: Read M pages of R and sort in memory

Step 1: Read M pages of R and sort in memory, then write to disk

Step 1: Repeat for next M pages until all R is processed

Step 1: Do the same with S

Step 1: Do the same with S

Step 2: Join while merging sorted runs

Step 2: Join while merging sorted runs

Total cost: 3B(R) + 3B(S)

Step 2: Join while merging Output tuples

- (1,1)
- (1,1)
- (1,1)
- (1,1)

Step 2: Join while merging sorted runs

Step 2: Join while merging sorted runs

Cost

- Sort and write S to disk: 4(B(S))
- Sort and write R to disk: 4(B(R))
- Read and merge = B(R) + B(S)
- Total = 5(B(R) + B(S))
- With B(R) $<= M^2$ and B(S) $<= M^2$

- R = 1000 blocks
- S = 500 blocks
- M = 101 buffers

 Note some more savings can be accrued by combining the second phase of sorting with the join itself.


```
M_1 = B(R)/M runs for R

M_2 = B(S)/M runs for S

Merge-join M_1 + M_2 runs;

need M_1 + M_2 \le M to process all runs

i.e. B(R) + B(S) \le M^2
```

Main memory and disk I/O required for sort based algorithms.

Operators	$egin{array}{c} { m Approximate} \ { m \it M} \ { m required} \end{array}$	Disk I/O	Section
$ au,\gamma,\delta$	\sqrt{B}	3B	15.4.1, 15.4.2, 15.4.3
∪, ∩, −	$\sqrt{B(R) + B(S)}$	$3\big(B(R)+B(S)\big)$	15.4.4, 15.4.5
\bowtie	$\sqrt{\maxig(B(R),B(S)ig)}$	$5\big(B(R)+B(S)\big)$	15.4.6
\bowtie	$\sqrt{B(R)+B(S)}$	3(B(R)+B(S))	15.4.8

Two-Pass Algorithms

- What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
 - Sorting
 - Hashing

Partitioned Hash

• Partition R it into k buckets: R₁, R₂, R₃, ..., R_k

• Assuming $B(R_1)=B(R_2)=...=B(R_k)$, we have $B(R_i)=B(R)/k$, for all i

• Goal: each R_i should fit in main memory: $B(R_i) \le M$

How do we choose k?

• We choose k = M-1 Each bucket has size approx. $B(R)/(M-1) \approx B(R)/M$

Assumption: $B(R)/M \le M$, i.e. $B(R) \le M^2$

Partitioned Hash Join--Algorithm

- Step 1:
 - Hash S into M-1 buckets
 - Send all buckets to disk
- Step 2
 - Hash R into M-1 buckets
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

Step 1: Read relation S one page at a time and hash into the 4 buckets

Step 1: Read relation S one page at a time and hash into the 4 buckets

Step 1: Read relation S one page at a time and hash into the 4 buckets

Step 1: Read relation S one page at a time and hash into the 4 buckets

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Step 1: Read relation S one page at a time and hash into the 4 buckets When a bucket fills up, flush it to disk

Step 2: Read relation R one page at a time and hash into same 4 buckets

Step 3: Read one partition of R and create hash table in memory using a *different* hash function

Step 3: Read one partition of R and create hash table in memory using a *different* hash function

Step 3: Read one partition of R and create hash table in memory using a *different* hash function

Step 4: Scan matching partition of S and probe the hash table

Step 5: Repeat for all the buckets

Total cost: 3B(R) + 3B(S)

Step 4: Scan matching partition of S and probe the hash table

Step 5: Repeat for all the buckets

Total cost: 3B(R) + 3B(S)

Partitioned Hash Join

OUTPUT **Original Relation Partitions** Partition both relations **INPUT** using hash fn h: R tuples in hash function partition i will only match S *** * ()** \diamond \diamond \diamond tuples in partition i. h M-1 **M-1** B main memory buffers **Disk Disk**

Read in a partition of R, hash it using h2 (<> h!).
 Scan matching partition of S, search for matches.

Cost

• Cost: 3B(R) + 3B(S)

Assumption: min(B(R), B(S)) <= M²

Minimum because 1-pass require the smaller operand to be less than
 M-1 and the larger one can always be streamed in

Summary of Join algorithms

- 1-pass
 - Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- 2-pass
 - Partitioned Hash: 3B(R)+3B(S);
 - min(B(R),B(S)) <= M²
 - Merge Join: 3B(R)+3B(S)
 - $B(R)+B(S) <= M^2$

Hash Vs Sort

- Hash-based algorithms have a size requirement that depends on the smaller of the two arguments rather than the sum of two arguments.
- Sort-based algorithms produce result in sorted order---save some more if results to be piped to other operators.
- Hash-based algorithms depend on buckets being equal in size.

- Selection on equality: $\sigma_{a=v}(R)$
- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

- Selection on equality: $\sigma_{a=v}(R)$
- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

- What is the cost in each case?
 - Clustered index on a:
 - Unclustered index on a

- Selection on equality: $\sigma_{a=v}(R)$
- B(R)= size of R in blocks
- T(R) = number of tuples in R
- V(R, a) = # of distinct values of attribute a

- What is the cost in each case?
 - Clustered index on a: B(R)/V(R,a)
 - Unclustered index on a: T(R)/V(R,a)
- Note: we ignore I/O cost for index pages

Index-based selection; cost of $\sigma_{a=v}(R)$

- Example:
 - B(R) = 2000
 - T(R) = 100,000
 - V(R, a) = 20
- Table scan:
- Index based selection:

Index-based selection; cost of $\sigma_{a=v}(R)$

- Example:
 - B(R) = 2000
 - T(R) = 100,000
 - V(R, a) = 20
- Table scan: B(R) = 2,000 I/Os
- Index-based selection:

- Example:
 - B(R) = 2000
 - T(R) = 100,000
 - V(R, a) = 20
- Table scan: B(R) = 2,000 I/Os
- Index-based selection:

- Example:
 - B(R) = 2000
 - T(R) = 100000
 - V(R, a) = 20
- Table scan: B(R) = 2000 I/Os
- Index-based selection:
 - If index is clustered: 2000/20 = 100
 - If index is unclustered: 100000/20 = 5000
- Lesson: Don't build unclustered indexes when V(R,a) is small!

Nested Loop Join

- R ⋈ S
- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Cost:
- If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
- If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

Summary of Join algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
- Partitioned Hash: 3B(R)+3B(S);
 - min(B(R),B(S)) <= M²
- Merge Join: 3B(R)+3B(S)
 - $B(R)+B(S) <= M^2$
- Index Join: B(R) + T(R)B(S)/V(S,a)
 - (unclustered)

Summary of Query Execution

- For each logical query plan
 - There exist many physical query plans
 - Each plan has a different cost
 - Cost depends on the data
- Additionally, for each query
 - There exist several logical plans
- Next: query optimization
 - How to compute the cost of a complete plan?
 - How to pick a good query plan for a query