CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing
DePaul University

Last time

* Index structures
e Hash-based indexes
* B+ trees

Types of Operator Algorithms

* One-pass algorithms

* Reading data from disk only once.
* One argument to fit in memory except select and project operators

* Two-pass algorithms

* Data too large to fit in main memory

* Reading data a first time from disk, processing it is some way, then reading again from
disk.

* Index-based algorithms
* Use indexes to reduce the amount of data fetched.

Cost Parameters

e Cost = total number of 1/Os
* This is a simplification that ignores CPU, network

* Parameters:
* B(R) = # of blocks (i.e., pages) for relation R
* T(R) = # of tuples in relation R

* V(R, a) = # of distinct values of attribute a
* When ais a key, V(R,a) = T(R)
* When ais not a key, V(R,a) can be anything < T(R)

Cost Convention

e Cost = the cost of reading operands from disk

* Cost of writing the final result to disk is not included; need to count it
separately when applicable

* Assumption: Arguments to operator are on disk but result is in main

memory.

* |f final answer, then result is written to disk and the cost of doing so depends
on the size of the answer and not how it was computed.

Join Algorithms

* Hash join : B(R) + B(S)
* Nested loop join
* Sort-merge join

Hash Join T1 D T2

1
2

3
4

T1

‘Bob’ ‘Seattle’

‘Ela’ ‘Everett’

Jill’ ‘Kent’

‘Joe’ ‘Seattle’

T2
‘Blue’ 123
‘Prem’ 432
‘Prem’ 343
‘GrpH’ 554

TP T2

M = 15 pages

T2

Scan T1 (open())

T1
916
a5

M =15 pages h=pid % 5

-0

o2

Scan T2 and probe into hash table (next())

M =15 pages h=pid % 5

T1 12
B IOH B
[2]4]
4 | 3 113 2 | 4 EZ

B (:]s / I
o /

E— Input buffer Output or

pass to
next operator

Scan T2 and probe into hash table (next())

M =15 pages h=pid % 5

CT O ooBE Bnon
[2]4]
413|173 24 n4

[
o

0
o o /

E— Input buffer Output or
pass to

next operator

Scan T2 and probe into hash table (next())

M =15 pages h=pid % 5

0 ooE Enom

Output or
pass to
next operator

Input buffer

Join Algorithms

* Hash join : B(R) + B(S)
* Nested loop join: B(R) + B(S) *T(R); B(R)+ B(S)B(R)
* Sort-merge join

Nested Loop Join

* Tuple-based nested loop R < S
* Ris the outer relation, S is the inner relation

for each tupletl in R do

for each tuple t2in Sdo
if t1 and t2 join then output (t1,t2)

§ Cost: B(R) + T(R) B(S)
§ Multiple-pass since S is read many times

Block refinement

for each block of tuplesrin R do

for each block of tuples sin S do
for all pairs of tuplestlinr, t2ins
if t1 and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)
Keep smaller relation between R and S as the outer one

Group/Chunk-Block refinement

* for each group of M-1 blocks rin R do

 for each block of tuples sin S do

e for all pairs of tuplestlinr, t2ins
e iftl and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)/(M-1)

Key idea: Remember that the fewer times we read in S, the better.
Utilize the buffer more by reading several pages of R more.

Group-based NLJ

S
214 || 6|6
4 131|113
2|8
8|9

M = 3 pages

Input buffer for R

Input buffer for S

Block-based NLJ

M = 3 pages

S
214 || 6|6
4 131|113
2|8
8|9

2 | 4

Input buffer for R

Input buffer for S

Block-based NLJ

M = 3 pages

S
214 || 6|6
4 131|113
2 | 8

8 |9

2 | 4

Input buffer for R

Input buffer for S

Block-based NLJ

M = 3 pages
S Input buffer for R
4 | 3 1| 3
Input buffer for S
2| 8 2 | 4
8 |9

Block-based NLJ

M = 3 pages
S Input buffer for R
4 | 3 1| 3
Input buffer for S
8|9

Block-based NLJ

M = 3 pages

S Input buffer for R

4 3 1 3

Input buffer for S
218 2 | 8
8 | 9

And so on till one scan of Sis done.

Block-based NLJ

M = 3 pages

S 2

=

Input buffer for R

Input buffer for S

Block-based NLJ

M = 3 pages

S 2 Input buffer for R

SSSIN
2 | 4

Input buffer for S

Any further improvements?

* Index-based NLJ

* An index on T2 that is on the appropriate field (i.e. the field we are
joining on), it can be very fast to look up matches.

* Cost: The I/O cost is B(R) + T(R)*(cost to look up matching records in
S).

Sort-merge Join

* Sort-merge join: R X S
* Scan R and sort in main memory

* Scan S and sort in main memory
e Merge Rand S

e Cost: sort(R) + sort(S) + B(R) + B(S)
* One pass algorithm when B(S) + B(R) <= M
* Typically, this is NOT a one pass algorithm.

Scan T1 and sort in memory

M = 15 pages
S KI5 X D O
2| 4 6 | 6
4 | 3 1 3
2| 8
8 9

Scan T2 and sort in memory

M = 15 pages
KI5 X D O
2| 4 6 | 6
4 | 3 e 112123 (3|4 4|6
o[g 6 | 8|89
8 9

Merge T1 and T2

214|166
4 131113
2 | 8
8 | 9

M = 15 pages

K EX1 N

112 (2|3 3|4|/4]|6

KN

Output buffer

6 81| 8|9

Merge T1 and T2

2|14 || 6|6
413 |11]3
2 | 8
8 9

M = 15 pages

KIE X G

112 (2|3 3|4|/4]|6

2 [

Output buffer

6 81| 8|9

Keep merging till on relation ends

Algorithm

* We begin at the start of R and S and advance one or the other until
we get to a match

* If r,<s;, advance R; else if r;>s; , advance S — the idea is to advance the lesser
of the two until we get a match

* Let’s say pair (r;, s;) is match. Mark this spot in S as marked(S) and
check each subsequent record in S (s; ,s;,1,S;:,, €tc) until we find
something that is not a match (i.e. read in all records in S that match

tor).

* Go to the next record in R and go back to the marked spot in S and
begin again at step 1 (except instead of beginning at the start of R and
the start of S, do it at the indices we just indicated)

Example

R S R S

- R 5 ENETS sd b ERNETS sd bid
NS sd bid 22| dustin 28 103 22 dustin 28 103
22 dustin) 28 103 S 28 yuppy 28 104 28 yuppy 28 104
28 yuppy 28 104 = 31 lubber =31 101 =] —>31 lubber 31 101
= 31 lubber 31 101 31 lubber2 31 102 31 lubber2 = 31 102
31 lubber2 31 102 44 guppy 42 142 44 guppy 42 142
44 guppy 42 142 57 rusty 58 107 57 rusty 58 107
57 rusty 58 107

sid sname bid sid sname bid

sid sname bid 28 yuppy 103 28 yuppy 103

28 yuppy 103 28 yuppy 104 28 yuppy 104

28 yuppy 104 31 lubber 101 31 lubber 101

31 lubber 102

28 <31; advance S Mark 31 (black arrow); Advance S

Output match Output match

EENETSE so i

22
28
=) 31
31
a4
57

R S R
[sid__| sname Y

dustin 28
dustin 28 103 28 yuppy 28
yuppy 28 104 31 lubber = 31
lubber 31 101 = 31 lubber2 31
lubber2 31 102 44 guppy 42
guppy) 42 142 57 rusty 58
rusty 58 107
sid shame bid
sid sname bid 28 yuppy 103
28 yuppy 103 28 yuppy 104
28 yuppy 104 31 lubber 101
31 lubber 101 31 lubber 102
31 lubber 102 31 lubber2 101
Advance S
Mismatch
Reset S
Advance R

Another match

bid

103
104
101
102
142
107

R

[sid | sname ___JNEY

22
28
31
== 31
44
57

dustin 28
yuppy 28
lubber 31
lubber2 = 31
guppy 42
rusty 58
sid shame bid
28 yuppy 103
28 yuppy 104
31 lubber 101
31 lubber 102

31 lubber2 101
31 lubber2 102

Advance S

Output Match

bid

103
104
101
102
142
107

Two-Pass Algorithms

* Fastest algorithm seen so far is one-pass hash join
* What if data does not fit in memory?
* Need to process it in multiple passes

* Two key techniques
* Sorting
e Hashing

External Sort Merge

* Phase one: load M blocks in memory, sort, send to disk, repeat

Phase one: load M blocks in memory, sort, send to disk, repeat

Q: How long are the runs?

T > - >
1\\\ M		
v v
Disk Main memory Disk

External Sort Merge---M block long runs

* Phase one: load M blocks in memory, sort, send to disk, repeat

Phase one: load M blocks in memory, sort, send to disk, repeat

Q: How long are the runs?

T > - >
1\\\ M		
v v
Disk Main memory Disk

External Sort Merge

* Phase two: merge M runs into a bigger run
* In effect Merge M — 1 runs into a new run and 1 for output buffer.

CD//, Input 1 —
| Il | l
I — | ~| Input 2 —| Output) . |
l L ... / | |
7 [7|InputM v
Disk Main memory OISk

External Sort Merge

* Arun in a sequence is an increasing subsequence

e What are the runs?
2,4,99, 103, 88, 77, 3, 79, 100, 2, 50

External Sort-Merge: M-way Merge

e Use M blocks of memory to buffer (sorted) input runs. Reserve 1
block to buffer output

* Repeat until done
* Select next record from one of the buffer pages

* Write that record to output buffer (if the output buffer is full, write the page
to disk)

* Delete the processed record from the buffer
* If buffer is empty, read the next block (in that run)

Example

* Merging three runs to produce a longer run:
0, 14, 33, 88, 92, 192, 322

2,4,7,43,78, 103, 523

1,6,9,12,33,52, 88, 320

* Output: O

Example

* Merging three runs to produce a longer run:
, 14, 33, 88, 92, 192, 322

2,4,7,43,78, 103, 523

1,6,9,12,33,52, 88, 320

* Output: 0,1

Example

* Merging three runs to produce a longer run:
, 14, 33, 88, 92, 192, 322

2,4,7,43,78, 103, 523
,6,9,12, 33,52, 88, 320

* Output: 0,1,2

Example

* Merging three runs to produce a longer run:
, 14, 33, 88, 92, 192, 322
,4,7,43,78,103, 523
,6,9,12, 33,52, 88, 320

* Output: 0,1,2,4

Example

* Merging three runs to produce a longer run:
, 14, 33, 88, 92, 192, 322
,4,7,43,78, 103, 523
,6,9,12, 33,52, 88, 320

* Output: 0,1,2,4,6,7

Short video to watch

* https://www.youtube.com/watch?v=1dtlutGISsQ

Example

* Sort table T = 1960 pages with 8 available buffers

* Questions
 How many sorted runs will be produced after each pass?
* How many pages will be in each sorted run for each pass?
 How many I/Os does the entire sorting operation take?

Example

* Sort table T = 1960 pages with 8 available buffers

* Questions
 How many sorted runs will be produced after each pass?
1st pass = 1960/8 = 245 sorted runs of 8 pages each
Subsequent passes 7 pages each.
2"dpass = 245/7 = 35 sorted runs of 8*7 = 56 pages
3"d pass = 35/7 = 5 sorted runs of 56*7 = 392 pages
4th pass = can merge all remaining sorted runs since less than 7 sorted runs

Produces one sorted run of 1960 pages.

Example

* Sort table T = 1960 pages with 8 available buffers

* Questions
 How many sorted runs will be produced after each pass?
e 245,35,5,1
* How many pages will be in each sorted run for each pass?
* §,56,392,1960
 How many I/Os does the entire sorting operation take?
* Easch pass takes 2*N 1/Os = 4*2*1960 = 15,680

Approximation to Cost

e Approximately: Read+ write+ read = 3B(R) in each pass (without
storing final output to disk)
 B(R) to read B blocks
 B(R) to write sorted sublists
e Again read all sorted sublists.

How large a table can be sorted?

* Observation 1: For external sort-merge to work there must not be
more than M-1 runs.

* Observation 2: Each run is M blocks long.

e Suppose R fits in B blocks, then M* (M-1) >=B
* |f approx. B <= M2 then we are done

Size of R

* Assumption: B(R) <= M?
* How large can R be?
Suppose blocks are 64K = 216 bytes and main memory is 1GB = 23° bytes
e M=7?
e M?2=7
* Size of Relation =7

Using Ext. Sort Merge in Join

e How?

Using Ext. Sort Merge in Join

e Step 1a: generate initial runs for R (X,Y)
e Step 1b: generate initial runs for S (Y,Z)

e Step 2: merge and join
e Either merge first and then join
e Or merge & join at the same time

* Repeat
* Find the least value y of Y that is currently in front of R and S.
* |If y does not appear at the front of other relation, then remove the tuple with y

* Else, identify all the tuples from both relations having sort key y. If necessary,
read blocks and R and S until no further blocks. Maximum buffers available = M.

* Output all tuples.

Example

Setup: Want to joinRand S

Relation R has 10 pages with 2 tuples per page

Relation S has 8 pages with 2 tuples per page

Values shown are values of join attribute for each given tuple

— Disk
_/

S Memory M = 5 pages

R
B
B
3 4

12 14 11 9

12| 1

N o ~
w - ©
©
©

Example

Step 1: Read M pages of R and sort in memory

Memory M = 5 pages

~ w ol &
© N (OO [N

Example

Step 1: Read M pages of R and sort in memory, then write to disk

119

~ w (&) »
((o) N N —_
N
()]

(6]
-
N

12| 1

Memory M = 5 pages

N

w
(&)
~

ofl=flol- B
C
(@)
—h
A

Example

Step 1: Repeat for next M pages until all R is processed

Memory M = 5 pages

Example

Step 1: Do the same with S

Memory M = 5 pages

— T
R
Run10of S Run2ofS
0|1 115

2|3 7|09

3|4 1|12

5|7

8|9

Example

Step 1: Do the same with S

Memory M = 5 pages

— T
R
Run10of S Run2ofS
0|1 115

2|3 7|09

3|4 1|12

5|7

8|9

Example

Step 2: Join while merging sorted runs

Total cost: 3B(R) + 3B(S)

Step 2: Join while merging

Memory M = 5 pages Output tuples

S Run
S Run2
°1 "] Run1 Output
buffer
115 | Run2
2|3 719
Input buffers
3|4 1] 12
5|7

Example

Step 2: Join while merging sorted runs

2|3 719
3|4 11|12
517

Memory M = 5 pages

Total cost: 3B(R) + 3B(S)

Step 2: Join while merging

11| Run1

Input buffers

Output tuples

115 | Run2

(1,1)
(1,1)
(1,1)
(1,1)
Output
buffer

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run1 Output
buffer
15| Run2

Input buffers

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

Example

Step 2: Join while merging sorted runs

2|3 719
3|4 11 (12
5|7

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run‘
Run2
2|3

Input buffers

Run1 Output

115 | Run2

buffer

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

Example

Step 2: Join while merging sorted runs

2|3 7
3|4 11
517

Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

Run‘
Run2
2|3

Run1

Input buffers

115 | Run2

Output
buffer

Step 2: Join while merging
Output tuples

(1,1)

(1,1)

(1,1)

(1,1)

(2,2)

(2,2)

(3,3)

(3,3)

Cost

e Sort and write S to disk: 4(B(S))
e Sort and write R to disk: 4(B(R))
* Read and merge = B(R) + B(S)

e Total = 5(B(R) + B(S))

* With B(R) <= M2 and B(S) <= M?

Example

e R =1000 blocks
* S =500 blocks
e M =101 buffers

* Note some more savings can be accrued by combining the second
phase of sorting with the join itself.

Example

—
—] | - Input 1
1]
Input2 e Output
|~ /
\\/\\
Input M

Main memory

M; = B(R)/M runs for R

M, = B(S)/M runs for S

Merge-join M; + M, runs;

need M; + M, <=M to process all runs
i.,e. B(R)+B(S) <=M?

Main memory and disk |/O required for sort
based algorithmes.

Approximate
Operators M required Disk I/0 Section
7,7, 0 VB 3B 15.4.1, 15.4.2,
15.4.3
u,n, — v B(R) + B(S) 3(B(R) + B(S)) | 15.4.4, 15.4.5
o< \/ma,x(B(R), B(S)) | 5(B(R) + B(S)) | 15.4.6
D v/ B(R) + B(S) 3(B(R) + B(S)) | 15.4.8

Two-Pass Algorithms

* What if data does not fit in memory?
* Need to process it in multiple passes

* Two key techniques
* Sorting
* Hashing

Partitioned Hash

* Partition R it into k buckets: Ry, R,, R3, ..., Ry
* Assuming B(R;)=B(R,)=...= B(R,), we have B(R;) = B(R)/k, for all i

* Goal: each R, should fit in main memory: B(R;) <M

How do we choose k?

* We choose k = M-1 Each bucket has size approx. B(R)/(M-1) = B(R)/M

Relation R
OUTPUT Partitions
> 1 e
1 1
INPUT 2
2 N hash 2
> function o0 e
h M-1
B(R) M-1
~ N~

Disk M main memory buffers Disk

Assumption: B(R)YM <M, i.e.B(R)< M?2

Partitioned Hash Join--Algorithm

* Step 1:
e Hash S into M-1 buckets
e Send all buckets to disk

* Step 2
e Hash R into M-1 buckets
e Send all buckets to disk
* Step 3

* Join every pair of buckets

Example

Step 1: Read relation S one page at a time and hash into M-1 (=4 buckets)

Memory M = 5 pages
Hash h: value % 4

0
310 1

Input buffer 2

3

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Memory M = 5 pages
Hash h: value % 4

0

0

1
Input buffer 2

3| 3

5 11 12 | 1

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Memory M = 5 pages
Hash h: value % 4

0

0

1
Input buffer 2

117

3| 3

5 11 12 | 1

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Memory M = 5 pages
Hash h: value % 4

0 0

1| 1
Input buffer 2

3/ 3|7

5 11 12 | 1

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets

Memory M = 5 pages
Hash h: value % 4

ol ©
1| 1
Input buffer ’)

41 3

33 |7

SRl 12| 1

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

— Disk
k/

S Memory M = 5 pages

R

. (o]
3 | o Hash h: value % 4
3 4

Input buffer
2|5 P 2

9| 8 31 3|7

119

NS

w
(6)]
\I

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

— Disk
k/

S Memory M = 5 pages

R

. (o]
3 | o Hash h: value % 4
3 4

Input buffer
2|5 P 2

9| 8 31 3|7

119

NS

w
(6)]
\I

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

. /x

— Disk

¥/ k/
S Memory M = 5 pages

R

. (o)
3 | o Hash h: value % 4
3 4

Input buffer
2|5 P 2

9|8 3 3|7

119

|
(

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

. /x

— Disk

¥/ k/
S Memory M = 5 pages

R

. (o)
3 | o Hash h: value % 4
3 4

43 11

Input buffer
2|5 P 2

9|8 3| 3 3|7

119

|
(

Example

Step 1: Read relation S one page at a time and hash into the 4 buckets
When a bucket fills up, flush it to disk

. /x

— Disk

¥/ k/
S Memory M = 5 pages

R

. (o)
3 | o Hash h: value % 4
3 4

43 11

Input buffer
2|5 P 2

9|8 3| 3 3|7

119

|
(

Example

Step 2: Read relation R one page at a time and hash into same 4 buckets

Memory M = 5 pages
Hash h: value % 4

0

1
Input buffer 2

3

Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages

Hash h2: value % 3
\

Input buffer Output buffer

Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

BN - B

Input buffer Output buffer

Example

Step 3: Read one partition of R and create hash table in memory using a different hash function

Memory M = 5 pages
Hash h2: value % 3

24 4]
>

Input buffer Output buffer

0| 4 8 |12

Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

()}

Hash h2: value % 3

44]s

0

B
>

Input buffer

Output buffer

Example

Step 4: Scan matching partition of S and probe the hash table
Step 5: Repeat for all the buckets
Total cost: 3B(R) + 3B(S)

Memory M = 5 pages

()}

Hash h2: value % 3

44]s

0

B
>

Input buffer

Output buffer

Partitioned Hash Join

Original Relation OUTPUT [Partitions
S— 1 -
» Partition both relations e
using hash fn h: R tuples in INPUT
partition i will only match S -] fdetion oo
tuples in partition |. = h M-1 eee
N~ N~

Original Relation OUTPUT | Partitions
> 1 S
= Partition both relations , 1
using hash fn h: R tuples in INPUT 2
partition i will only match S] fdeihn s o
tuples in partition i. "o h M-1 °e
M-1
~ N~
Disk B main memory buffers Disk
Partitions]
of R&S Join Result
: . Hash table for partition
S
Readlln a.partltlon of R, hash S, (< M-1 pages)
hash it using h2 (<> h!). fn
Scan matching partition of h2 ° 00

S, search for matches.

Y

oh

.
>

Input buffer Output
for Ri buffer

Y

B main memory buffers Disk

Cost
e Cost: 3B(R) + 3B(S)
* Assumption: min(B(R), B(S)) <= M?

* Minimum because 1-pass require the smaller operand to be less than
M-1 and the larger one can always be streamed in

Summary of Join algorithms

* 1-pass
* Block Nested Loop: B(S) + B(R)*B(S)/(M-1)

* 2-pass
* Partitioned Hash: 3B(R)+3B(S);
« min(B(R),B(S)) <= M?2
e Merge Join: 3B(R)+3B(S)
 B(R)+B(S) <= M2

Hash Vs Sort

* Hash-based algorithms have a size requirement that depends on the
smaller of the two arguments rather than the sum of two arguments.

* Sort-based algorithms produce result in sorted order---save some
more if results to be piped to other operators.

* Hash-based algorithms depend on buckets being equal in size.

Index-based selection

* Selection on equality: 0,_,(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

Index-based selection

* Selection on equality: 0,_,(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

e What is the cost in each case?
e Clustered index on a:
 Unclustered index on a

Index-based selection

* Selection on equality: 0,_,(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

 What is the cost in each case?
 Clustered index on a: B(R)/V(R,a)
* Unclustered index on a: T(R)/V(R,a)

* Note: we ignore I/O cost for index pages

Index-based selection; cost of o__ (R)

* Example:
« B(R) = 2000
* T(R) = 100,000
* V(R,a)=20

* Table scan:

* Index based selection:

Index-based selection; cost of o__ (R)

* Example:
« B(R) = 2000
« T(R) = 100,000
* V(R,a)=20
e Table scan: B(R) = 2,000 I/Os

* Index-based selection:

Index-based selection

* Example:
« B(R) = 2000
« T(R) = 100,000
* V(R,a)=20
* Table scan: B(R) =2,000 1/0Os

* Index-based selection:

Index-based selection

* Example:
« B(R) = 2000
* T(R) =100000
* V(R,a)=20

e Table scan: B(R) =2000 I/Os

* Index-based selection:
* |f index is clustered: 2000/20 = 100
* If index is unclustered: 100000/20 = 5000

* Lesson: Don’t build unclustered indexes when V(R,a) is small!

Nested Loop Join

RS

* Assume S has an index on the join attribute

* [terate over R, for each tuple fetch corresponding tuple(s) from S
* Cost:

* Ifindex on S is clustered: B(R) + T(R)B(S)/V(S,a)

* Ifindex on S is unclustered: B(R) + T(R)T(S)/V(S,a)

Summary of Join algorithms

* Block Nested Loop: B(S) + B(R)*B(S)/(M-1)
 Partitioned Hash: 3B(R)+3B(S);
* min(B(R),B(S)) <= M?
* Merge Join: 3B(R)+3B(S)
e B(R)+B(S) <= M?
* Index Join: B(R) + T(R)B(S)/V(S,a)

e (unclustered)

Summary of Query Execution

* For each logical query plan
* There exist many physical query plans
* Each plan has a different cost
* Cost depends on the data

e Additionally, for each query
* There exist several logical plans

* Next: query optimization
 How to compute the cost of a complete plan?
* How to pick a good query plan for a query

