CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing
DePaul University

What we have learned so far

 Overview of the architecture of a DBMS

* Reading:
https://dice.cs.depaul.edu/553/courses/readings/anatomyofadatabase.pdf

e Access methods (scan)
* Heap files

* Role of buffer manager
* Practiced the concepts in hwl and labl

* SQL to Relational algebra and some rules of query equivalence

Query Execution

e Pull-based execution

On the fly next() (called by query executor)
cname
Nested Loop N next() (called by above executor)

On the fly

next() (called by above executor) Ceity = ‘Palo Alto’

File scan

Borrower

next() (in the file

- Customer
lle scan next() (in the file)

Next Lectures

* How to answer queries efficiently!
* Physical query plans and operator algorithms

* How to automatically find good query plans
* How to compute the cost of a complete plan
* How to pick a good query plan for a query i.e., query optimization

e Lab 2 &3:

* How to implement basic operator?
 How to parse and optimize queries?

Index-based Access Methods

HeapFile In SimpleDB

e Data is stored on disk in an OS file. HeapFile class knows how to
“decode” its content

* Control flow:
* SeqScan calls methods such as "iterate" on the HeapFile Access Method

* During the iteration, the HeapFile object needs to call the
BufferManager.getPage() method to ensure that necessary pages get loaded
into memory.

* The BufferManager will then call HeapFile .readPage()/writePage() page to
actually read/write the page.

HeapFile Access Method

API
* Create or destroy a file

* Insert a record
* Requires a free vs full data structure

* Delete a record with a given rid (rid)

* rid: unique tuple identifier (more later)
* O(n)

e Search: Get a record with a given rid
* O(n)

e Scan all records in the file

Motivation for Indexing

e Scan all records in the file that match a predicate of the form
attribute op value

e Example: Find all students with GPA > 3.5
e Critical to support such requests efficiently

* Why read all data form disk when we only need a small fraction of
that data?

* This lecture and next, we will learn how

Searching in a Heap File

* File is not sorted on any attribute
 Student(sid: int, age: int, ...)

30

18 ...

70

21

20

20

40

19

80

19

60

18

10

21

50

22

-

1 record

1 page

Example

* 10,000 students
e 10 student records per page
* Total number of pages: 1,000 pages

* Find student whose sid is 80
. ?

* Find all students older than 20
. ?

e Can we do better?

Example

* 10,000 students
e 10 student records per page
* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Must read on average 500 pages

* Find all students older than 20
* Must read all 1,000 pages

e Can we do better?

Sequential File

* File sorted on an attribute, usually on primary key

 Student(sid: int, age: int, ...)

10

21 ...

20

20

30

18

40

19

50

22

60

18

70

21

80

19

Example

* Total number of pages: 1,000 pages

* Find student whose sid is 80
. ?

* Find all students older than 20
. ?

e Can we do even better?

Example

* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Could do binary search, read log,(1,000) = 10 pages

* Find all students older than 20
* Must still read all 1,000 pages

e Can we do even better?

* Note: Sorted files are inefficient for inserts/deletes

Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) I
select *
CREATE INDEX V2 ON V(P, M) from V
where P=55 and M=77

select *
from V
where P=55

Outline

* Index structures
e Hash-based indexes
* B+ trees

Indexes

* Index: data structure that organizes data records on disk to optimize
selections on the search key fields for the index

* An index contains a collection of data entries, and supports efficient
retrieval of all data entries with a given search key value k

* Indexes are also access methods!
* So they provide the same API as we have seen for Heap Files
* And efficiently support scans over tuples matching predicate on search key
* Indexs can be in-memory or disk-based

Index on a Sequential Data File

Index File
Search key: age

18

18

19

19

20

21

21

22

\l/

10 21
20 20
30 18
40 19
50 22
60 18
70 21
80 19

Data File

(sequential file
sorted on sid)

Example

* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Could do binary search, read log,(1,000) = 10 pages

* Find all students older than 20

* Depends on index size

* Ifin memory one disk record
* Else log,(pages for an index)

Indexes

» Search key = can be any set of fields on which a query may specify a
predicate
* not the same as the primary key

* Index = collection of data entries

e Data entry for key k can be:
* (k, RID)
* (k, list-of-RIDs)
* The actual record with key k

* In this case, the index is also a special file organization
e Called: “indexed file organization”

Indexed File Organization

L S

T Free space 4 |F

\ J
Header contains slot directory M _
+ Need to keep track of # of slots Slot directory
+ Also need to keep track of free space (F) Each slot contains

<record offset, record length>

Can handle variable-length records

Can move tuples inside a page without changing RIDs
RID is (PagelD, SlotID) combination

Different Types of Files

* For the data inside base relations:
* Heap file (tuples stored without any order)
e Sequential file (tuples sorted on some attribute(s))
* Indexed file (tuples organized following an index)

* Then we can have additional index files that store (key,rid) pairs

* Index can also be a “covering index”
* Index contains (search key + other attributes, rid)
* Index suffices to answer some queries

Primary Index

* Primary index determines location of indexed records
* Dense index: sequence of (key, rid) pairs

Index File Data File (Sequential file)

A A
r N ~ —

1 dataentry —{ 10
20

20

30 —_

30

40 —

40

50

60 50

1 page {

70

60

80

aram

Vil

70

80

e Sparse Index

10

10

30

20

50

/

70

30

40

90

110

50

130

150

60

70

Can store more search

80

keys in same number of
index files

Example

* Let’s assume all pages of index fit in memory

* Find student whose sid is 807

* Index (dense or sparse) points directly to the page
* Only need to read 1 page from disk.

* Find all students older than 207

* How can we make both queries fast?

Secondary Index

* Do not determine placement of records in data files
* Always dense (why ?)

= 10 | 21
~_
18 20 20
19 —
9 30 | 18
40 | 19
20 /
21 50 | 22
21
™ 60 | 18
22 -
70 | 21
80 | 19

Clustered Vs Unclustered Index

//\\ Data entries / \

Data entries L N

/A 1\ (Index File)

N
/4R NN\ atafile /N oL T et

Data Records Data Records

CLUSTERED UNCLUSTERED

Clustered = records close in index are close in data

Clustered/Unclustered

* Primary index = clustered by definition

e Secondary indexes = usually unclustered

* Possible that sorted order of the secondary index matches that of primary
index, but hardly ever the case

Secondary Index

* Applications
* Index unsorted files (heap files)
 When necessary to have multiple indexes
* Index files that hold data from two relations

Index Classification Summary

* Primary/secondary (unique vs non-unique)
* Primary = determines the location of indexed records
* Secondary = cannot reorder data, does not determine data location

* Dense/sparse (number of entries in the index)
* Dense = every key in the data appears in the index
* Sparse = the index contains only some keys

e Clustered/unclustered (locality of index to data pages)
* Clustered =records close in index are close in data
* Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

What type of index?

tid user time content
10 I 10 2 05:03:00 L — 1 record
N
20 —4— , |20 |1 12:05:07 | *...”
30 —
40 \s 3 | 2 18:12:00 | “..” 1
40 |3 00:16:13 | “..0 J 1 page
50 |
60 \\
\ 50 |4 1011013 | “...
70 —
p” 60 |1 04:00:07 | “..0
70 |2 12:08:34 | «..
80 |4 11:08.09 | “...”

Ex1: Primary Dense Index

tid user time content
10 _] 10 2 05:03:00 | «..” L 1 record
-
2 —+— , |20 |1 12:05:07
30 —
40 \s’ 30 | 2 18:12:00 1
40 |3 00:16:13 J 1 page
50 —
60 \\
\ 50 4 10:10:13
70 —
80 \ 60 1 04:09:07
70 |2 12:08:34
80 |4 11:08:09

= Dense: an “index key” for every database record
. f(ln this case) every “database key” appears as an “index
e

= Primary: determines the location of indexed records
= Also, Clustered: records close in index are close in data

Improve further? Clustered Index can be made Sparse (normally one key per page)

Ex2. Draw a primary sparse index on “tid”

tid user time content

10 2 05:03:00 - 1 record
20 1 12:05:07

30 | 2 18:12:00 1

40 |3 00:16:13 J 1 page
50 4 10:10:13

60 1 04:09:07

70 2 12:08:34

80 4 11:08:09

Large Indexes

* What if index does not fit in memory?

* Index the index itself!
* Tree-based index
 Hash-based index

Hash-based index

* Good for point queries but not range queries

h2(age) = 00
age o=
h2(age)=01 | — | =~
21 ~
19 \

Secondary

10

21

50

20

30

18

70

19

20

22

60

18

=

40

21

80

19

hash-based index
(age, rid) pairs

h1(sid) = 0

h1(sid) = 3

Primary hash-based index

sid

Example

e Consider the following database schema:

Field Name Data Type Size on disk

Id (primary key) INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes

emailAddress Char(100) 100 bytes

Compute

* Let default block size is 1024 bytes.
Let total records in the database = 5,000,000

* Length of each record =
* How many disk blocks are needed to store this data set =

e Suppose you want to find the person with a

e particular id (say 5000)
Assume data file sorted on primary key

* What is the cost of doing so with:
* Linear search:
* Binary search:
* Index search with index pointer taking 4 bytes.

* Now, suppose you want to find the person having firstName = ‘Alexa’
Here, the column isn’t sorted and does not hold a unique value.

* What is the cost of searching for the records?

 Solution: Create an index on the firstName column
* The schema for an index on firstName is:

* Field Name Data Type Size on disk

* firstName Char(50) 50 bytes

* (record pointer) Special 4 bytes

e Total records in the database = 5,000,000

* Length of each index record = 4+50 = 54 bytes Let the default block
size be 1,024 bytes

* Therefore,
We will have 1024/54 = 18 records per disk block

* Also, No. of blocks needed for the entire table = 5000000/18 =
277,778 blocks

* Now, a binary search on the index will result in
* log, 277778 = 18.08 = 19 block accesses.

* Also, to find the address of the actual record, which requires a further
block access to read, bringing the total to 19 + 1 = 20 block accesses.

* Thus, indexing results in a much better performance as compared to
searching the entire database.

B+ Tree Index

* How many index levels do we need?
* Can we create them automatically? Yes!
* Can do something even more powerful!

B-tree Vs B+-tree

e Search trees
e |dea in B Trees
* Make 1 node =1 page (=1 block)

* |dea in B+ Trees
* Keep tree balanced in height — dynamic rather than static
* Make leaves into a linked list: facilitates range queries

Basics

* Parameter d = the degree
* Each node has d <= m <= 2d keys (except root)
* Each node also has m+1 pointers

30| 120 1 240 Right pointer of k:

Left pointer of k:

to keys <k o N to keys >=k
/ l \ \ _
Keys k<30 Keys 30<=k<120 Keys 120<=k<240 Keys 240k
¢ EaCh |eaf haS d <=Mm<= Zd keyS. Leaf node:

e Left pointer from key = k:
40 [s0 [60 | 70 to the block containing data
with value k in that attribute

- | — Next leaf . .
/ I NN e Last remaining pointer
Data records| 40 50 s0 1 70 on right: To the next leaf on

right

B+ Tree Properties

* For each node except the root, maintain 50% occupancy of keys
* Insert and delete must rebalance to maintain constraints

Operations

* Search name
e Exact key values: Studegt
 Start at the root age = 25
* Proceed down, to the leaf
* Range queries:
* Find lowest bound as above name
* Then sequential traversal Student
20 <= age
and age <= 30

Example

80
// \
20 60 100 120 140
~
10 15 18 20 30 40 50 60 65 80 85 90
/ \ / L] \ 1
v \ \ 4 \Y \ v \
10| 15| 18| |20| [30]l40]| 50|60/ 65|/ 80| |85/ |90

* How large d ? One B+ tree node fits on one block

* Example:
Key size = 4 bytes, Pointer size = 8 bytes, Block size = 4096 bytes

e 2dx4 +(2d+1)x8 <= 4096

*d=170

Space consumption of B+ tree in practice

* Typical order: 100. Typical fill-factor: 67%.

e average fanout = 133

* Typical capacities
* Height 4: 1334 = 312,900,700 records
* Height 3: 1333 = 2,352,637 records

e Can often hold top levels in buffer pool
* Levell= 1page = 8Kbytes
* Level2= 133pages= 1Mbyte
* Level 3=17,689 pages = 133 Mbytes

Insert

* Insert (K, P)

* Find leaf where K belongs, insert

If no overflow (2d keys or less), halt

If overflow (2d+1 keys), split node, insert in parent:

parent

/

K1

K2

K3

K4

K5

PO

Pl

P2

P3

P4

P5

parent
K3

/

K1

K2

K4

K5

PO

Pl

P2

P3

P4

If leaf, also keep K3 in right node
When root splits, new root has 1 key only

Insert

Insert K=19
80
|
20 60 100 120 140
\ ~
10 15 18 20 30 40 50 60 65 80 85 90
TR / L \ 1 /
N \ \ 4 \ \ \ 4 \
10| [15] [18] |[20] [30]/40| |50 ||60]|65](80| |85/ |90

After insertion

80
// ~
20 60 100 120 140
| N
10 15 18 19 20 30 40 50 60 65 &0 85 90
TR ! A \ /
\ \ \\ j v \ \ v \
10| 15|18 19| 20|/ 30|/ 40| |50/ 60|/ 65| 80| |85] |90

Now insert 25

80
// \
20 60 100 120 140

| ~
10 15 18 19 20 30 40 50 60 65 80 &5 90
TR ! L] \ /

\ \\] v \ \ v \

10| 15|18 19| 20|/ 30|/ 40| |50/ 60|/ 65| 80| |85] |90

After insertion

80
// \
20 60 100 120 140

L \ NN ~
10 15 18 19 20 25 30 40 50 60 65 80 85 90
ol vy I AR E g4l /

\ \\ j A\ 4 \ \\ v \

10| 15|/ 18|19 20|/ 25|30 || 40|/ 50|60/ 65| 80| |85]| |90

But now have to spilit !

80
// \
20 60 100 120 140
| N~ ~
10 15 18 19 20 25 30 40 50 60 65 &0 85 90
/ \\ \\ \\ j \\ \\ \\ Tt \\ /
10| |151(/ 18119 20|25/ 30|l 40(|50]||60|/65| 80| |85/ |90

After the split

80
// \
20 30 60 100 120 140
Pl IR i ~
10 15 18 19 20 25 30 40 50 60 65 80 &5 90
/ \\ \\ \\ j 7 / \\T \\ /|y 1
10| |15 || 18 | 19 || 20 || 25 || 30 || 40 50 || 60 || 65|80 |85/ |90

* Note: when a leaf is split, the middle key is copied to the new leaf on right (and also inserted in parent)
* Since we assumed the right pointer from key = k points to keys >= k

Delete

Delete (K, P)
* Find leaf where K belongs, delete
* Check for capacity

* If leaf below capacity, search adjacent nodes (left first, then right) for
extra tuples and rotate them to new leaf

* If adjacent nodes at 50% full, merge
e Update and repeat algorithm on parent nodes if necessary

Delete 30

80
// \
20 30 60 100 120 140

| ~ ~
10 15 18 19 20 25 30 40 50 60 65 &0 85 90
TR I Tt It /

\ \\ j \ 4 / \ v \

10| |15/ 18 | 19 | 20 || 25 || 30 || 40 50 |60 65|80 |85/ |90

After deleting 30

80

May change to
40, or not B
~
20 | 30 | 60 100 | 120 | 140
v \ N
10 15 18 19 20 25 40 50 60 65
/ V] | g 1| a1

— |
—
\
/

10 15118 || 19 || 20 || 25 40 ‘50 60 || 65 || 80

Now delete 25

80
// \
20 30 60 100 120 140

L \ N
10 15 18 19 20 25 40 50 60 65 80 85 90
TR ! Tt/ 1t \ /

\ \\ j \4 / v \

10| 151 18 || 19 | 20 || 25 40 \50 60 || 65|/ 80| |85/ | 90

After deleting 25
Need to rebalance
Rotate

80

— ~
20 30 60 100 120 140
" \ N
10 15 18 19 20 40 50 60 65 80 85 90
TR ! Tt/ 1t \ /

VL

10 151 18 || 19 || 20

65

80

85

90

Now delete 40

80
// \
19 30 60 100 120 140
" \ N
10 15 18 19 20 40 50 60 65 80 85 90
TR av. Tt/ 1t \ /
/| \ // / K
10| |15 18] 19 | 20 40 \50 60 || 65|/ 80| |85/ |90

After deleting 40
Rotation not possible
Need to merge nodes

80

19 30 60 100 120 140

10

10

Parent must be deleted

Final tree

80

L

19 60

10

15

18

19 20 50

/ ~

10

15

\ /]

18

19

100 120 140

N ~
60 65 80 85 90
|\ /
v \

50 || 60|65 80| (85| |90

* Default index structure on most DBMSs

* Very effective at answering ‘point’ queries: sid = 80

* Effective for range queries: 50 < age AND age < 100

* Less effective for multirange: 50<age<100 AND 2018<started<2020

Another example

 Start with an empty B+ tree, d=2
* Insert17/, 3, 25, 95, 8, 57, 69
 Then insert 29, 91, 78, 80, 92, 99, 97

Delete

* Now delete all nodes in the following order:
*57,3,99, 29,17, 25, 95, 8, 78, 92, 69, 97, 91

Implementation of Physical Operators

e [terator method

* A group of three methods that allows a consumer of the results of the
physical operator to get one tuple at a time.

 Methods: open(), getnext(), close().

Union Operator with Iterator interface

Open() {
b := the first block of R;
t := the first tuple of block b;

}

GetNext() {
IF (t is past the last tuple on block b) {
increment b to the next block;
IF (there is no next block)
RETURN NotFound;
ELSE /* b is a new block */
t := first tuple on block b;
} /* now we are ready to return t and increment */

oldt := t;
increment t to the next tuple of b;
RETURN oldt;

X

Close() {

}

Cost Parameters

e Cost = total number of 1/Os
* This is a simplification that ignores CPU, network

* Parameters:
* B(R) = # of blocks (i.e., pages) for relation R
* T(R) = # of tuples in relation R

* V(R, a) = # of distinct values of attribute a
* When ais a key, V(R,a) = T(R)
* When ais not a key, V(R,a) can be anything < T(R)

Cost Convention

e Cost = the cost of reading operands from disk

* Cost of writing the final result to disk is not included; need to count it
separately when applicable

* Assumption: Arguments to operator are on disk but result is in main

memory.

* |f final answer then result is written to disk and the cost of doing so depends
on the size of the answer and not how it was computed.

Types of Algorithms

* One-pass algorithms

* Reading data from disk only once.
* One argument to fit in memory except select project

Index-based algorithms

* Use indexes to reduce the amount of data fetched.

e Sort-scan: means sorting while scanning. If R is ot be sorted on a and B_tree on a, then scan
B tree

* Two-pass algorithms
* Data too large to fit in main memory
* Reading data a first time from disk, processing it is some way, then reading again from disk.

* Note about readings:
* In class, we discuss only algorithms for joins
* Other operators are easier: book has extra details

Types of Operators

* Tuple-at-a-time unary operators
* Do not require the entire relation to be in memory at once.
* Read one block at a time and produce output.
* Select, project

* Full-relation, unary operators
* See all tuples at once.
* One-pass algorithms must limit to buffer size M.
* Distinct, Group By, Order By

* Full-relation, binary operators.
* For one-pass algorithm, one argument must be limited to size M

Join Algorithms

* Hash join
* Nested loop join
* Sort-merge join

Hash Join

* Hash join: R ™ S

* Scan R, build buckets in main memory; Then scan S, hash with same
function, and join

* Cost: B(R) + B(S)

Hash-Join (Cont.)

A RN A

[[

] -<—>*1

4 ' ’

4

partitions partitions
of r of s

Database System Concepts - 6 Edition 12.33 @Silberschatz, Korth and Sudarshan

What if there is not sufficient memory to
store both relations?

* One-pass algorithm when B(R)-1 £ M or approximately B(R) <M

* In other words, all pages of R must fit into the memory of the join
operator.

Example

* Open()
e Scan R and build buckets

* GetNext()

* Scan one block of S, join with hash table of R, and output.
 Till S.next() is not found.

* Close()
 Close R andS.

Nested Loop Join

* Tuple-based nested loop R < S
* Ris the outer relation, S is the inner relation

for each tupletl in R do

for each tuplet2in Sdo
if t1 and t2 join then output (t1,t2)

Cost in terms of I/O?

Nested Loop Join

* Tuple-based nested loop R < S
* Ris the outer relation, S is the inner relation

for each tupletl in R do

for each tuplet2in Sdo
if t1 and t2 join then output (t1,t2)

§ Cost: B(R) + T(R) B(S) § Multiple-pass since S is read many times

Block refinement

for each block of tuplesrin R do

for each block of tuples sin S do
for all pairs of tuplestlinr, t2ins
if t1 and t2 join then output (t1,t2)

What is the cost?

Block refinement

for each block of tuplesrin R do

for each block of tuples sin S do
for all pairs of tuplestlinr, t2ins
if t1 and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)

Group-Block refinement

* for each group of M-1 blocks rin R do

 for each block of tuples sin S do

e for all pairs of tuplestlinr, t2ins
e iftl and t2 join then output (t1,t2)

What is the cost?

Group-Block refinement

* for each group of M-1 blocks rin R do

 for each block of tuples sin S do

e for all pairs of tuplestlinr, t2ins
e iftl and t2 join then output (t1,t2)

Cost: B(R) + B(R)B(S)/(M-1)

iterator implementation for tuple-based NLJ

Open() {
R.0Open();
S.0pen();
s := S.GetNext();
}

GetNext () {
REPEAT {
r := R.GetNext();
IF (r = NotFound) { /* R is exhausted for
the current s */
R.Close();
s := S.GetNext();
IF (s = NotFound) RETURN NotFound;
/* both R and S are exhausted */
R.Open();
r := R.GetNext();
}
}
UNTIL (r and s join);
RETURN the join of r and s;

}

Close() {
R.Close();
S.Close();

FOR each chunk of M-1 blocks of S DO BEGIN
read these blocks into main-memory buffers;
organize their tuples into a search structure whose
search key is the common attributes of R and S;
FOR each block b of R DO BEGIN
read b into main memory;
FOR each tuple t of b DO BEGIN
find the tuples of S in main memory that
join with t;
output the join of t with each of these tuples;
END;
END;
END;

Index-based selection

* Selection on equality: o,=v(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

Index-based selection

* Selection on equality: o,=v(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

e What is the cost in each case?
e Clustered index on a:
 Unclustered index on a

Index-based selection

* Selection on equality: 0,=V(R)
* B(R)=size of R in blocks
* T(R) = number of tuples in R

* (R, a) = # of distinct values of attribute a

 What is the cost in each case?
 Clustered index on a: B(R)/V(R,a)
* Unclustered index on a: T(R)/V(R,a)

* Note: we ignore I/O cost for index pages

Index-based selection

* Example:
« B(R) = 2000
* T(R) =100,000
* V(R,a)=20

* Table scan:

* Index based selection:

Index-based selection

* Example:
« B(R) = 2000
« T(R) = 100,000
* V(R,a)=20
e Table scan: B(R) = 2,000 I/Os

* Index-based selection:

Index-based selection

* Example:
« B(R) = 2000
« T(R) = 100,000
* V(R,a)=20
* Table scan: B(R) =2,000 1/0Os

* Index-based selection:

Index-based selection

* Example:
« B(R) = 2000
* T(R) = 100000
* V(R,a)=20

e Table scan: B(R) =2000 1/0Os

* Index-based selection:
* |f index is clustered: 2000/20 = 100
* If index is unclustered: 100000/20 = 5000

* Lesson: Don’t build unclustered indexes when V(R,a) is small!

Nested Loop Join

RS

* Assume S has an index on the join attribute

* [terate over R, for each tuple fetch corresponding tuple(s) from S
* Cost:

* Ifindex on S is clustered: B(R) + T(R)B(S)/V(S,a)

* Ifindex on S is unclustered: B(R) + T(R)T(S)/V(S,a)

