CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing
DePaul University

DBMS Architecture: Query Processor

Parser

Query Rewrite

Optimizer

Executor

Query Evaluation Steps

SQL query

" Logical
Query plan
optimization< '
Physical
plan

MPCS 53003

Steps in Query Evaluation

* Step 0: admission control
* User connects to the db with username, password
* User sends query in text format

e Step 1: Query parsing: Syntax Check
e Parses query into an internal format
* Performs various checks using catalog

* Step 2: Query rewrite: Simplify queries
* View rewriting, flattening, etc.

Continue with Query Evaluation

* Step 3: Query optimization
* Find an efficient query plan for executing the query
* A query plan is
* Logical query plan: an extended relational algebra tree

* Physical query plan: with additional annotations at each node

* Access method to use for each relation
* Implementation to use for each relational operator

* Next 5 lectures devoted to query processor.

Example Database Schema

 Supplier(sno, sname, scity, sstate)
* Part(pno, pname, psize, pcolor)
e Supply(sno, pno, price)

* View: Find suppliers in Chicago, IL
CREATE VIEW NearbySupp As

SELECT sno, sname

FROM Supplier
Where scity = ‘Chicago’ and sstate = ‘Il

Example Query

* Find the names of all suppliers in Chicago who supply Part 2

SELECT sname FROM NearbySupp

WHERE sno IN (SELECT sno
FROM Supplies
WHERE pno = 2)

Rewritten Version of Our Query

SELECT sno, sname

* Original Query: ﬁiéﬁcféeiiimiu FROM Supplier
WHEREI sno IN (I SELECT sno WtHItERE‘TIf’Ity = "Chicago’ and
sstale =

FROM Supplies
WHERElpno = 2 |

* Rewritten Query:
SELECT S.sname

FROM Supplier S, Supplies U
Where S.scity = ‘Chicago’ AND S.sstate = ‘IL

AND s.sno = U.sno AND U.pno = 2

MPCS 53003

Example in SQLDeveloper

Relational Algebra

 Relational algebra (RA) is a query language for the relational model
with a solid theoretical foundation.

* Relational algebra is not visible at the user interface level (not in any
commercial RDBMS, at least).

* However, almost any RDBMS uses RA to represent queries internally
(for query optimization and execution).

* Knowledge of relational algebra will help in understanding SQL and
relational database systems in general.

Classic Relational Operators

* Basic Operators

select (o)

project ()

union (U)

set difference (—)
cartesian product (x)
rename (p)

o uUes whE

Extended Relational Operators

* Group By/Aggregation (y)
* Order By/Sort (1)
* Distinct/Duplicate Elimination (6)

Algebra equivalence

* Closure Property

Relation

/

Relational
Operator

Relation

Relation

* In mathematics, an algebra is a

 set (the carrier), and
» operations that are closed with respect to the set.

 Example: (N, {*, +}) forms an algebra.

* |n case of RA,

* the carrieris the set of all finite relations.

Relational
Operator

Bank Database Schema

Account Branch
bname acct no | balance bname bceity assets
Depositor Borrower
cname acct_no cname Ino
Loan
Customer :
bname Ino amt

cname cstreet ccity

Bank Database

Account

bname acct no balance
Downtown A-101 500
Mianus A-215 700
Perry A-102 400
R.H. A-305 350
Brighton A-201 900
Redwood A-222 700
Brighton A-217 750

cname acct_no
Johnson A-101
Smith A-215
Hayes A-102
Turner A-305
Johnson A-201
Jones A-217
Lindsay A-222
Customer
cname cstreet ccity
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stanford
Williams Nassau Princeton
Adams Spring Pittstfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stanford

Branch
bname bcity assets
Downtown Brooklyn 9
Redwood Palo Alto 2.1
Perry Horseneck 1.7
Mianus Horseneck 0.4
R.H. Horseneck 8
Pownel Bennington 0.3
N. Town Rye 3.7
Brighton Brooklyn 7.1

Borrower

cname Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Adams L-16
Loan
bname Ino amt
Downtown L-17 1000
Redwood L-23 2000
Perry L-15 1500
Downtown L-14 1500
Mianus L-93 500
R.H. L-11 900
Perry L-16 1300

Select (o)

b b = bname beity assets
O beity = “Bro‘)klyn”(ranch) = Downtown | Brooklyn 9
Brighton | Brooklyn 7.1
O assets > $8M (G beity = “Brooklyn” (branch)) —
bname beity assets
Downtown | Brooklyn 9

(Same aAS O a55ets > $8M AND beity = “Brooklyn” (bI’&l’lCh))

Project (rt)

T4, .., 4n (A€lation)

« Relation: name of a table or result of another query
- Each A, is an attribute

Customer
- Idea: n© selects columns (vs. o which selects rows) cname | cstreet | ccity

cstreet ccit

T cstreet, ccity (CUStOmer) R Main Harriszln
North Rye

Park Pittsfield

Putnam Stanford

Nassau Princeton

Spring Pittsfield

Alma Palo Alto

Sand Hill Woodside

Senator Brooklyn

Walnut Stanford

Union (U)

. Relation, U Relation,

R U S valid only if:

1. R, S have same number of columns (arity)

2. R, S corresponding columns have same domain (:

(T cname (depositor)) W (TC cpame (bOrrower)) =

Schema:

cname acct_no cname Ino

cname

Johnson
Smith
Hayes
Turner
Jones

Lindsay

Jackson
Curry

Williams

Adams

Set Difference (—)

Notation: Relation; - Relation,
R - S valid only 1if:

1. R, S have same number of columns (arity)

2. R, S corresponding columns have same domain (:)

Example:

(TC bname (Gamountz 1000 (loan))) o (TC bname (G balance < 800 (account))) —

bname Ino amount bname acct_no balance bname
Downtown | L-17 1000 ~ | Mianus A-215 700 =
Redwood L-23 2000
Perry L-15 1500 Redwood A-222 700
L-14 1500
L-16 1300

Cartesian Product (x)

Relation; x Relation,

R x S like cross product for mathematical relations:

 every tuple of R to every tuple of S
dep 0S itor X b orrower = depositor. acct_no borrower. Ino
cname cname
Johnson A-101 Jones L-17
Johnson A-101 Smith L-23
Johnson A-101 Hayes L-15
Johnson A-101 Jackson L-14
Johnson A-101 Curry L-93
Johnson A-101 Smith L-11
Johnson A-101 Williams L-17
Johnson A-101 Adams L-16
Smith A-215 Jones L-17

Rename (p)

Notatlon: p identiﬁero (identifiery, ..., identifier) (Rel ation)

p res (dcname, acctno, bcname, 1no) (dep051t0r X bOI’I‘OWGI‘) —

dccname acctno bcname Ino
Johnson A-101 Jones L-17
Johnson A-101 Smith L-23
Johnson A-101 Hayes L-15
Johnson A-101 Jackson L-14
Johnson A-101 Curry L-93

Johnson A-101 Smith L-11
Johnson A-101 Williams L-17
Johnson A-101 Adams L-16
Smith A-215 Jones L-17

Distinct (0)

Notation: 0 (Relation)

O (T beity(Branch) =
bname bcity assets
Downtown | Brooklyn oM
Brighton | Brooklyn 7.1M
Kenwood | Queens 40M
Manhattan | NY City M

beity

Brooklyn
Queens
NY City

Grouping (v)

Notation: y AgAs Ay (Relation)

Y .iy(Branch) =
b beit ts
Hame oy e beity Sum(assets)

Downtown | Brooklyn 9

, Brooklyn 15.1
Brighton | Brooklyn 7.1

Queens 40
Kenwood | Queens 40 ,
: NY City 3

Manhattan | NY City 3

Sort (7))

Notation: T AgAp ... A, (Relation)
Group By/Aggregation (y)

Order By/Sort (1)
Distinct/Duplicate Elimination (6)

T (sum(assets) (y city(BranCh))) —

beity Sum(assets) beity Sum(assets)
Brooklyn 15.1 = Queens 40
Queens 40 Brooklyn 15.1
NY City 3 NY City 3

Example Queryl in RA

* Determine Ino for loans that are for an amount that is larger than the amount
of some other loan. (i.e. Ino for all non-minimal loans)

Example Query in RA

* Determine Ino for loans that are for an amount that is larger than the amount of some other loan. (i.e. Ino for all non-minimal loans)

SELECT * FROM LOAN L1, LOAN L2 SELECT * FROM LOAN L1 WHERE SELECT * FROM Loan L1 WHERE
WHERE L1.amount > L2.amount amount > ANY (select amount from Loan L2) amount > (SELECT min(amount) FROM LOAN)

Can do 1n steps:

Temp, & ...
Temp, € ... Temp; ...

Example Query in RA

Ino | amt
L-17 | 1000
Templ é T Ino,amt (loan) 123 | 2000
L-15 | 1500
L-14 | 1500
L-93 500
L-11 900
L-16 | 1300

Tempz é p Temp2 (Ino2,amt2) (Temp 1)

Ino2 | amt2
L-17 1000
L-23 2000
L-15 1500
L-14 1500
L-93 500
L-11 900
L-16 1300

Example Query in RA

3. Take the cartesian product of 1 and 2

Temp; € Temp, x Temp,

Ino amt Ino2 amt2
L-17 1000 L-17 1000
L-17 1000 L-23 2000
L-17 1000 L-16 1300
L-23 2000 L-17 1000
L-23 2000 L-23 2000
L-23 2000 L-16 1300

Example Query in RA

4. Select non-minimal loans

Temp4 é Oamt > amt2 (Temp3)

5. Project on Ino

Result € 7, (Temp,)
... or, 1f you prefer...

°Tt Ino (Gamt >amt2 (Tc Ino,amt (loan) X (pTempZ (Ino2,amt2) (Tc Ino,amt (Ioan)))))

Example Query in RA

* Determine Ino for loans that are for an amount that is larger than the amount of some other loan. (i.e. Ino for all non-minimal loans)

SELECT * FROM LOAN L1, LOAN L2 SELECT * FROM LOAN L1 WHERE SELECT * FROM Loan L1 WHERE
WHERE L1.amount > L2.amount amount > ANY (select amount from Loan L2) amount > (SELECT min(amount) FROM LOAN)

Can do 1n steps:

Temp, & ...
Temp, € ... Temp; ...

Branch

beity

assets

Example Query2 in RA e

NNNNN

ooooo
llllllll
eeeeeeeee
eeeeeeeee
eeeeeeeee

Combining Operators to Form RA expressions

* Relational Algebra (RA) expressions: A SQL query in term of RA operators.
. A RA expression gives a step-by-step procedure

 Multiple SQL may map to the same RA expression. There can be multiple
RA expressions for the same SQL.

* RA equivalence: Two expressions that will result in the same answer, but
one of the expressions can be more quickly evaluated

* RA Expression Tree: RA maintained as a tree structure inside the DBMS

Example Query3 in RA
Express the following query in the RA:

cname acct_no
Johnson A-101
Smith A-215
Hayes A-102
Turner A-305
Johnson A-201
Jones A-217
Lindsay A-222
cname Ino
Jones L-17
Customer Sonith L3
. Hayes L-15
cname cstreet ccity Jackson L-14
- - Curry L-93
J ones Main Harrison Smith L-11
Smith North Rye Williams L-17
Hayes Main Harrison Adams L-16
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stanford
Williams Nassau Princeton
Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn

Green Walnut Stanford

Review
Express the following query in the RA:

T, €p (borrower)

T1 (cname2, Ino)

T, € depositor x T,

T3 é O cname = cname? (TZ)
Result € 7 .. (T3)

Above sequence of operators (p, x, 6) very common.

Motivates additional (redundant) RA operators.

Relational Algebra

1. Natural Join (><)

2. Generalized Projection ()

3. Outer Joins (qoeq < T><T)

4. Subqueries
5. Nested Correlation

Natural Join

Notation: Relation; ><\ Relation,

ldea: combines p, x, o

C
+
] >
+
r

depositor ><| borrower

W NN~

7tcname,acct_no,lno (Gcname=cnam62 (deposnor X pt(cnamez,lno) (bOI’I’OWGI’)))

Generalized Projection

Toepe, (Relation)

61,..

e, ...,e, can include arithmetic expressions — not just attributes

cname | limit balance

credit = Jones 5000 2000
Turner | 3000 2500

Then...
cname limit-balance
T chame, limit - balance (Credlt) - Jones 3000
Turner 500

Outer Joins

loan

bname Ino amt cname Ino

Downtown | L-170 | 3000 borrower = Jones L-170

Redwood | L-230 | 4000 Smith | L-230

Perry L-260 | 1700 Hayes L-155
bname amt | cname

loan I>< borrower =

Downtown | L-170 | 3000 | Jones
Redwood | L-230 | 4000 | Smith

Outer Joins

bname Ino amt cname Ino
loan = | Downtown | L-170 | 3000 borrower = Jones L-170
Redwood | L-230 | 4000 Smith | L-230
Perry L-260 | 1700 Hayes | L-155
1. Left Outer Join (<1)
preserves all tuples in left relation
loan _I><{ borrower =
bname Ino amt | cname
Downtown | L-170 | 3000 | Jones
Redwood | L-230 | 4000 | Smith
Perry | L-260 | 1700 L

Outer Joins

bname Ino amt cname Ino

loan = | Downtown | L-170 [3000 | borrower = | Jones |L-170
Redwood | L-230 | 4000 Smith | L-230

Perry L-260 | 1700 Hayes | L-155

1. Left Outer Join (<1)

preserves all tuples in left relation

loan _I>< borrower =

bname Ino amt | cname
Downtown | L-170 | 3000 | Jones
Redwood | L-230 | 4000 | Smith
Perry |L-260|1700| -

RxS = (RxS)U((R—mas(RxS))x{(C:null)})

Outer Joins

bname Ino amt cname Ino
loan = | Downtown | L-170 | 3000 borrower = Jones | L-170
Redwood | L-230 | 4000 Smith | L-230
Perry L-260 | 1700 Hayes | L-155

2. Right Outer Join (i<t)

preserves all tuples in right relation

loan ><TC borrower =

bname Ino amt | cname
Downtown | L-170 | 3000 | Jones
Redwood | L-230 | 4000 | Smith
1 L-155 L Hayes

1 =NULL

RIS = (RxS)U((S-mas(RxS))x{(Cnull)})

Outer Joins

loan =

bname Ino amt cname Ino
Downtown | L-170 | 3000 | borrower = Jones | L-170
Redwood | L-230 | 4000 Smith L-230
Perry L-260 | 1700 Hayes | L-155
3. Full Outer Join (<T)
* preserves all tuples in both relations
loan I><[T borrower
bname Ino amt | cname
Downtown | L-170 [3000 | Jones
Redwood | L-230 | 4000 | Smith
Perry | L-260 | 1700 | L
L L-155 L Hayes

Subqueries (IN, NOT IN, ALL, ANY, EXISTS

* Find all customers who have loans greater than 1M.

Borrower

Customer
cname cstreet ccity

Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye

Lindsay Park Pittsfield
Turner Putnam Stanford

Williams Nassau Princeton
Adams Spring Pittstield

Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stanford

cname Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Adams L-16
Loan
bname Ino amt
Downtown L-17 1000
Redwood L-23 2000
Perry L-15 1500
Downtown L-14 1500
Mianus L-93 500
R.H. L-11 900
Perry L-16 1300

Subqueries (IN, NOT IN, ALL, ANY, EXISTS)

* Find all customers who have loan no between 50 and 100.

Customer

cname cstreet ccity

Select cname from Customer v | | e

th
es M cname
Curry
Lindsay Park Pittstield ~~ Jones
Where Chame In
Williams Nassau Princeton Hayes
Adams Spri ittsfield ~~ Jackson

(Select cname from Borrower N Smit
Where Ino LIKE L-[5-9][0-9])

Subqueries (IN, NOT IN, ALL, ANY, EXISTS)

<Condition>

A TR T

A A

P

 Two argument selection operator (o)

* Duplicate elimination (0) is necessary since the original guery assumes set
comparison between t and elements of S.

* Selection (o) is replaced by (o) where C is the join condition and any other
condition.

EXISTS

e Select customers who have loans in all the branches.

Borrower

cname Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Customer Adams L-16
Branch cname cstreet ccity
Jones Main Harrison Loan
bname bceity assets Smith North Rye
Hayes Main Harrison bname Ino amt
Downtown Brooklyn 9 Curry North Rye
Redwood Palo Alto 2.1 Lindsay Park Pittsfield Downtown L-17 1000
Perry Horseneck 1.7 Turner Putnam Stanford Redwood L-23 2000
Mianus Horseneck 0.4 Williams Nassau Princeton Perry L-15 1500
R.H. Horseneck 8 Adams Spring Pittsfield Downtown L-14 1500
Pownel Bennington 0.3 Johnson Alma Palo Alto Mianus L-93 500
N. Town Rye 3.7 Glenn Sand Hill Woodside RH. L-11 900
Brighton Brooklyn 7.1 Brooks Senator Brooklyn Perry L-16 1300
Green Walnut Stanford

EXISTS

e Select customers who have loans in all the branches.

SELECT cname FROM Customer C

WHERE

NOT EXISTS (

SELECT DISTINCT bname FROM Branch
MINUS

(SELECT bname FROM Loan L, Borrower B
WHERE C.cname = B.cname AND

B.Ino = L.Ino))

Branch

bname bcity assets
Downtown Brooklyn 9
Redwood Palo Alto 2.1
Perry Horseneck 1.7
Mianus Horseneck 0.4
R.H. Horseneck 8
Pownel Bennington 0.3
N. Town Rye 3.7
Brighton Brooklyn 7.1

Borrower

Customer
cname cstreet ccity
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stanford
Williams Nassau Princeton
Adams Spring Pittstield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stanford

cname Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Adams L-16
Loan
bname Ino amt
Downtown L-17 1000
Redwood L-23 2000
Perry L-15 1500
Downtown L-14 1500
Mianus L-93 500
R.H. L-11 900
Perry L-16 1300

Branch

. bname bcity assets
Without EXISTS-Attempt 1 | e |0
Redwood Palo Alto 2.1

Perry Horseneck 1.7

Mianus Horseneck 0.4

R.H. Horseneck 8

Pownel Bennington 0.3

N. Tow Rye 3.7

Brighto! Brooklyn 7.1

e Select customers who have loans in all the branches.

Borrower

SELECT chame FROM Borrower B, Loan L cname o
WHERE B.Ino = L.Ino =
AND L.bname IN (SELECT distinct bname from Branch) &
GROUP BY chname Cosomer

HAVING count(lno) = _m ;t ty T
(SELECT count(bname) from rw M W | |

Branch

. bname bcity assets
Without EXISTS-Attempt 2 | e |0
Redwood Palo Alto 2.1

Perry Horseneck 1.7

Mianus Horseneck 0.4

R.H. Horseneck 8

Pownel Bennington 0.3

N. Town Rye 3.7

Brighton Brooklyn 7.1

e Select customers who have loans in all the branches.

SELECT Chame FROM Customer
MINUS

Borrower

Select Chame FROM o

(SELECT cname, bname FROM Borrower, £¢an e ty
MINUS s s |
(SELECT cname,bname FROM Borrower, LV*@aan
WHERE B.Ino=L.Ino))

cname Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Adams L-16
Loan
bname Ino amt
Downtown L-17 1000
Redwood L-23 2000
Perry L-15 1500
Downtown L-14 1500
Mianus L-93 500
R.H. L-11 900
Perry L-16 1300

Continue with Query Evaluation

e Step 3: Query optimization (finding cheaper, equivalent
expressions)
* Find an efficient query plan for executing the query

* A query planis
* Logical query plan: an extended relational algebra tree
* Physical query plan: with additional annotations at each node

* Access method to use for each relation
* Implementation to use for each relational operator

* Next 5 lectures devoted to query processor.

Branch

. bname bcity assets
Logical Query Plan |t |
Redwood Palo Alto 2.1

Perry Horseneck 1.7

Mianus Horseneck 0.4

R.H. Horseneck 8

Pownel Bennington 0.3

N. Town Rye 3.7

Brighton Brooklyn 7.1

Find loans in branches which have assets greater than 1M

SELECT Ino FROM Loan, Branch

cname Ino
WHERE B.bname = L.bname AND assets > 1.0
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Customer Adams L-16
cname cstreet ccity
Jones Main Harrison
Smith North Rye
Hayes Main Harrison Loan
Curry North Rye
Lindsay Park Pittsfield bname Ino amt
Turner Putnam Stanford
Williams Nassau Princeton Downtown L-17 1000
Adams Spring Pittstield Redwood L-23 2000
Johnson Alma Palo Alto Perry L-15 1500
Glenn Sand Hill Woodside Downtown L-14 1500
Brooks Senator Brooklyn Mianus L-93 500
Green Walnut Stanford R.H. L-11 900
Perry L-16 1300

Logical Query Plan

Branch

bname bcity assets
Downtown Brooklyn 9
Redwood Palo Alto 2.1
Perry Horseneck 1.7
Mianus Horseneck 0.4
R.H. Horseneck 8
Pownel Bennington 0.3
N. Town Rye 3.7
lirighton 1§r001<llyn 7.1

Find customers who live in Palo Alto and have loans in branches with

assets greater than 1M

WHERE R.bname = L.bname

SELECT Ino FROM Loan L, Branch R, Borrower B, Customer C__cname

. { 4
AND ccity = ‘Palo Alto Customer
cname cstreet ccity
AND assets > 1.0 e | | M
° Smith North Rye
Hayes Main Harrison
Curry North Rye
— Lindsay Park Pittsfield
AND B.Cna“le - C.Cna“le Turner Putnam Stanford
Williams Nassau Princeton
Adams Spring Pittstield
— Johnson Alma Palo Alto
A N D B ° | n O — L, I n O Glenn Sand Hill Woodside
Brooks Senator Brooklyn
Green Walnut Stanford

Ino
Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-17
Adams L-16
Loan
bname Ino amt
Downtown L-17 1000
Redwood L-23 2000
Perry L-15 1500
Downtown L-14 1500
Mianus L-93 500
R.H. L-11 900
Perry L-16 1300

Physical Query Plan

* Logical query plan with extra annotations
* Implementation choice for each operator

* Access path selection for each relation
e Bottom of tree = read from disk
e Use a file scan or use an index

Pipelining

* Physical plan aims to support means the tuples are processed one-by-
one as they pass through the operator

On the fly
cname
Nested Loop N
On the fly 0

‘ Ceity = ‘Palo Alto’ BorroNer | lescan

. Customer
File scan

Query Executor

e Each operator implements Oplterator.java

e open()
* |nitializes operator state
* Sets parameters such as selection predicate

* next()
e Returns a Tuple!
e Operator invokes next() recursively on its inputs
* Performs processing and produces an output tuple

close():
e clean-up state

* Operators also have reference to their child operator in the query plan

Pipelining

* Physical plan is pipelined i.e., the tuples are processed one-by-one as
they pass through the operator

On the fly Open() (called by query executor)

chame

Nested Loop Open() (called by above executor)

e

On the fly 0'

Open() (called by above executor) ' Ceity = ‘Palo Alto’ File scan

Borrower

Open() (in the file)
Fil Customer
le scan Open() (in the file)

Pipelining

e Pull-based execution

On the fly next() (called by query executor)
cname
Nested Loop N next() (called by above executor)

On the fly

next() (called by above executor) Ceity = ‘Palo Alto’

File scan

Borrower
next() (in the file

- Customer
lle scan next() (in the file)

Query Execution In SimpleDB

Operator at
bottom of plan
open() In SimpleDB, SeqScan can
next() find HeapFile in Catalog
Heap File Access Method

Offers iterator interface

open()
next()

SeqScan

But if Heap File reads data
directly from disk, it will not

* open() stay cached in Buffer Pool!
* next()
» close()

Knows how to read/write pages from disk

iterators in SimpleDB

* SeqScan.java
* DbFilelterator.java

* Both have this method:
e public Tuple next()

* How does DbFilelterator.java get its tuples?
* Needs pages from buffer pool
e Buffer pool has this method: getPage()

Query Execution In SimpleDB

SeqgScan

l hf.next()

HeapFile for R

lterator interface
« open()

* next()
 close()

Read/write pages from disk

1

bp.getPage()
T

hf.readPage()

Database shares
a single cache in Buffer Pool

<

‘ Data on disk: OS Files |

DY HeapFile for S

Buffer « HeapFile for T
Pool

Manager

< HeapFileN...

Heap files for
other relations

HeapFile In SimpleDB

e Data is stored on disk in an OS file. HeapFile class knows how to
“decode” its content

* Control flow:
* SeqScan calls methods such as "iterate" on the HeapFile Access Method

* During the iteration, the HeapFile object needs to call the
BufferManager.getPage() method to ensure that necessary pages get loaded
into memory.

* The BufferManager will then call HeapFile .readPage()/writePage() page to
actually read/write the page.

HeapFile Access Method

API
* Create or destroy a file

* Insert a record
 Delete a record with a given rid (rid)
* rid: unique tuple identifier (more later)

* Get a record with a given rid

* Not necessary for sequential scan operator
e But used with indexes

e Scan all records in the file

Motivation for Indexing

e Scan all records in the file that match a predicate of the form
attribute op value

e Example: Find all students with GPA > 3.5
e Critical to support such requests efficiently

* Why read all data form disk when we only need a small fraction of
that data?

e This lecture and next, we will learn how

Searching in a Heap File

* File is not sorted on any attribute
e Student(sid: int, age: int, ...)

30

18 ...

70

21

20

20

40

19

80

19

60

18

10

21

50

22

-

1 record

1 page

Example

* 10,000 students
* 10 student records per page
* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Must read on average 500 pages

* Find all students older than 20
* Must read all 1,000 pages

e Can we do better?

Sequential File

* File sorted on an attribute, usually on primary key

e Student(sid: int, age: int, ...)

10

21 ...

20

20

30

18

40

19

50

22

60

18

70

21

80

19

Example

* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Could do binary search, read log2(1,000) = 10 pages

* Find all students older than 20
* Must still read all 1,000 pages

e Can we do even better?

* Note: Sorted files are inefficient for inserts/deletes

Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) I
select *
CREATE INDEX V2 ON V(P, M) from V
where P=55 and M=77

select *
from V
where P=55

Outline

* Index structures
e Hash-based indexes
* B+ trees

Indexes

* Index: data structure that organizes data records on disk to optimize
selections on the search key fields for the index

* An index contains a collection of data entries, and supports efficient
retrieval of all data entries with a given search key value k

* Indexes are also access methods!
* So they provide the same API as we have seen for Heap Files
* And efficiently support scans over tuples matching predicate on search key

Index on a Sequential Data File

Index File
Search key: age

18

18

19

19

20

21

21

22

\l/

10 21
20 20
30 18
40 19
50 22
60 18
70 21
80 19

Data File

(sequential file
sorted on sid)

Example

* Total number of pages: 1,000 pages

* Find student whose sid is 80
* Could do binary search, read log2(1,000) = 10 pages

* Find all students older than 20

* Depends on index size

* Ifin memory one disk record
* Else log,(pages for an index)

Indexes

» Search key = can be any set of fields
e not the same as the primary key, nor a key

* Index = collection of data entries

e Data entry for key k can be:
* (k, RID)
* (k, list-of-RIDs)
* The actual record with key k

* In this case, the index is also a special file organization
e Called: “indexed file organization”

Indexed File Organization

L S

T Free space 4 |F

\ J
Header contains slot directory M _
+ Need to keep track of # of slots Slot directory
+ Also need to keep track of free space (F) Each slot contains

<record offset, record length>

Can handle variable-length records

Can move tuples inside a page without changing RIDs
RID is (PagelD, SlotID) combination

Different Types of Files

* For the data inside base relations:
* Heap file (tuples stored without any order)
e Sequential file (tuples sorted on some attribute(s))
* Indexed file (tuples organized following an index)

* Then we can have additional index files that store (key,rid) pairs

* Index can also be a “covering index”
* Index contains (search key + other attributes, rid)
* Index suffices to answer some queries

Primary Index

* Primary index determines location of indexed records
* Dense index: sequence of (key,rid) pairs

Index File Data File (Sequential file)

A A
r N ~ —

1 dataentry —{ 10
20

20

30 —_

30

40 —

40

50

60 50

1 page {

70

60

80

aram

Vil

70

80

e Sparse Index

10

10

30

20

50

/

70

30

40

90

110

50

130

150

60

70

Can store more search

80

keys in same number of
index files

Example

* Let’s assume all pages of index fit in memory

* Find student whose sid is 807

* Index (dense or sparse) points directly to the page
* Only need to read 1 page from disk.

* Find all students older than 207

* How can we make both queries fast?

Secondary Index

* Do not determine placement of records in data files
* Always dense (why ?)

= 10 | 21
~_
18 20 20
19 —
9 30 | 18
40 | 19
20 /
21 50 | 22
21
™ 60 | 18
22 -
70 | 21
80 | 19

Clustered Vs Unclustered Index

//\\ Data entries / \

Data entries L N

/A 1\ (Index File)

N
/4R NN\ atafile /N oL T et

Data Records Data Records

CLUSTERED UNCLUSTERED

Clustered = records close in index are close in data

Clustered/Unclustered

* Primary index = clustered by definition

e Secondary indexes = usually unclustered

* Possible that sorted order of the secondary index matches that of primary
index, but hardly ever the case

Secondary Index

* Applications
* Index unsorted files (heap files)
 When necessary to have multiple indexes
* Index files that hold data from two relations

Index Classification Summary

* Primary/secondary
* Primary = determines the location of indexed records
* Secondary = cannot reorder data, does not determine data location

* Dense/sparse
* Dense = every key in the data appears in the index
* Sparse = the index contains only some keys

* Clustered/unclustered
* Clustered = records close in index are close in data
* Unclustered = records close in index may be far in data

* B+ tree / Hash table / ...

Ex1: Primary Dense Index

tid user time content
10 _] 10 2 05:03:00 | «..” L 1 record
-
2 —+— , |20 |1 12:05:07
30 —
40 \s’ 30 | 2 18:12:00 1
40 |3 00:16:13 J 1 page
50 —
60 \\
\ 50 4 10:10:13
70 —
80 \ 60 1 04:09:07
70 |2 12:08:34
80 |4 11:08:09

= Dense: an “index key” for every database record
. f(ln this case) every “database key” appears as an “index
e

= Primary: determines the location of indexed records
= Also, Clustered: records close in index are close in data

Improve further? Clustered Index can be made Sparse (normally one key per page)

Ex2. Draw a primary sparse index on “tid”

tid user time content

10 2 05:03:00 - 1 record
20 1 12:05:07

30 | 2 18:12:00 1

40 |3 00:16:13 J 1 page
50 4 10:10:13

60 1 04:09:07

70 2 12:08:34

80 4 11:08:09

Large Indexes

* What if index does not fit in memory?

* Index the index itself!
* Tree-based index
 Hash-based index

Hash-based index

* Good for point queries but not range queries

h2(age) = 00
age o=
h2(age)=01 | — | =~
21 ~
19 \

Secondary

10

21

50

20

30

18

70

19

20

22

60

18

=

40

21

80

19

hash-based index
(age, rid) pairs

h1(sid) = 0

h1(sid) = 3

Primary hash-based index

sid

Example

e Consider the following database schema:

Field Name Data Type Size on disk

Id (primary key) INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes

emailAddress Char(100) 100 bytes

Compute

* Let default block size is 1024 bytes.
Let total records in the database = 5,000,000

* Length of each record =
* How many disk blocks are needed to store this data set =

e Suppose you want to find the person with a

e particular id (say 5000)
Assume data file sorted on primary key

* What is the cost of doing so with:
* Linear search:
* Binary search:
* Index search with index pointer taking 4 bytes.

* Now, suppose you want to find the person having firstName = ‘Alexa’
Here, the column isn’t sorted and does not hold a unique value.

* What is the cost of searching for the records?

 Solution: Create an index on the firstName column
* The schema for an index on firstName is:

* Field Name Data Type Size on disk

* firstName Char(50) 50 bytes

* (record pointer) Special 4 bytes

e Total records in the database = 5,000,000

* Length of each index record = 4+50 = 54 bytes Let the default block
size be 1,024 bytes

* Therefore,
We will have 1024/54 = 18 records per disk block

* Also, No. of blocks needed for the entire table = 5000000/18 =
277,778 blocks

* Now, a binary search on the index will result in
* log2 277778 = 18.08 = 19 block accesses.

* Also, to find the address of the actual record, which requires a further
block access to read, bringing the total to 19 + 1 = 20 block accesses.

* Thus, indexing results in a much better performance as compared to
searching the entire database.

B+ Tree Index

* How many index levels do we need?
* Can we create them automatically? Yes!
* Can do something even more powerful!

B-tree Vs B+-tree

e Search trees
e |dea in B Trees
* Makelnode=1page(=1block)

* |dea in B+ Trees
* Keep tree balanced in height — dynamic rather than static
* Make leaves into a linked list : facilitates range queries

Basics

* Parameter d = the degree
* Each node has d <= m <= 2d keys (except root)
* Each node also has m+1 pointers

30| 120 1 240 Right pointer of k:

Left pointer of k:

to keys <k o N to keys >=k
/ l \ \ _
Keys k<30 Keys 30<=k<120 Keys 120<=k<240 Keys 240k
¢ EaCh |eaf haS d <=Mm<= Zd keyS. Leaf node:

e Left pointer from key = k:
40 [s0 [60 | 70 to the block containing data
with value k in that attribute

- | — Next leaf . .
/ I NN e Last remaining pointer
Data records| 40 50 s0 1 70 on right: To the next leaf on

right

B+ Tree Properties

* For each node except the root, maintain 50% occupancy of keys
* Insert and delete must rebalance to maintain constraints

Operations

* Search name
e Exact key values: Studegt
 Start at the root age = 25
* Proceed down, to the leaf
* Range queries:
* Find lowest bound as above name
* Then sequential traversal Student
20 <= age
and age <= 30

Example

80
// \
20 60 100 120 140
~
10 15 18 20 30 40 50 60 65 80 85 90
/ \ / L] \ 1
v \ \ 4 \Y \ v \
10| 15| 18| |20| [30]l40]| 50|60/ 65|/ 80| |85/ |90

* How large d ? One B+tree node fits on one block

* Example:
Key size = 4 bytes, Pointer size = 8 bytes, Block size = 4096 bytes

e 2dx4 +(2d+1)x8 <= 4096

*d=170

Space consumption of B+ tree in practice

* Typical order: 100. Typical fill-factor: 67%.

e average fanout = 133

* Typical capacities
* Height 4: 1334 = 312,900,700 records
* Height 3: 1333 = 2,352,637 records

e Can often hold top levels in buffer pool
* Levell= 1page = 8Kbytes
* Level2= 133pages= 1Mbyte
* Level 3=17,689 pages = 133 Mbytes

Insert

* Insert (K, P)

* Find leaf where K belongs, insert

If no overflow (2d keys or less), halt

If overflow (2d+1 keys), split node, insert in parent:

parent

/

K1

K2

K3

K4

K5

PO

Pl

P2

P3

P4

P5

parent
K3

/

K1

K2

K4

K5

PO

Pl

P2

P3

P4

If leaf, also keep K3 in right node
When root splits, new root has 1 key only

Insert

Insert K=19
80
|
20 60 100 120 140
\ ~
10 15 18 20 30 40 50 60 65 80 85 90
TR / L \ 1 /
N \ \ 4 \ \ \ 4 \
10| [15] [18] |[20] [30]/40| |50 ||60]|65](80| |85/ |90

After insertion

80
// ~
20 60 100 120 140
| N
10 15 18 19 20 30 40 50 60 65 &0 85 90
TR ! A \ /
\ \ \\ j v \ \ v \
10| 15|18 19| 20|/ 30|/ 40| |50/ 60|/ 65| 80| |85] |90

Now insert 25

80
// \
20 60 100 120 140

| ~
10 15 18 19 20 30 40 50 60 65 80 &5 90
TR ! L] \ /

\ \\] v \ \ v \

10| 15|18 19| 20|/ 30|/ 40| |50/ 60|/ 65| 80| |85] |90

After insertion

80
// \
20 60 100 120 140

L \ NN ~
10 15 18 19 20 25 30 40 50 60 65 80 85 90
ol vy I AR E g4l /

\ \\ j A\ 4 \ \\ v \

10| 15|/ 18|19 20|/ 25|30 || 40|/ 50|60/ 65| 80| |85]| |90

But now have to spilit !

80
// \
20 60 100 120 140
| N~ ~
10 15 18 19 20 25 30 40 50 60 65 &0 85 90
/ \\ \\ \\ j \\ \\ \\ Tt \\ /
10| |151(/ 18119 20|25/ 30|l 40(|50]||60|/65| 80| |85/ |90

After the split

80
// \
20 30 60 100 120 140
Pl IR i ~
10 15 18 19 20 25 30 40 50 60 65 80 &5 90
/ \\ \\ \\ j 7 / \\T \\ /|y 1
10| |15 || 18 | 19 || 20 || 25 || 30 || 40 50 || 60 || 65|80 |85/ |90

* Note: when a leaf is split, the middle key is copied to the new leaf on right (and also inserted in parent)
* Since we assumed the right pointer from key = k points to keys >= k

Delete

Delete (K, P)
* Find leaf where K belongs, delete
* Check for capacity

* If leaf below capacity, search adjacent nodes (left first, then right) for
extra tuples and rotate them to new leaf

* If adjacent nodes at 50% full, merge
e Update and repeat algorithm on parent nodes if necessary

Delete 30

80
// \
20 30 60 100 120 140

| ~ ~
10 15 18 19 20 25 30 40 50 60 65 &0 85 90
TR I Tt It /

\ \\ j \ 4 / \ v \

10| |15/ 18 | 19 | 20 || 25 || 30 || 40 50 |60 65|80 |85/ |90

After deleting 30

80

May change to
40, or not B
~
20 | 30 | 60 100 | 120 | 140
v \ N
10 15 18 19 20 25 40 50 60 65
/ V] | g 1| a1

— |
—
\
/

10 15118 || 19 || 20 || 25 40 ‘50 60 || 65 || 80

Now delete 25

80
// \
20 30 60 100 120 140

L \ N
10 15 18 19 20 25 40 50 60 65 80 85 90
TR ! Tt/ 1t \ /

\ \\ j \4 / v \

10| 151 18 || 19 | 20 || 25 40 \50 60 || 65|/ 80| |85/ | 90

After deleting 25
Need to rebalance
Rotate

80

— ~
20 30 60 100 120 140
" \ N
10 15 18 19 20 40 50 60 65 80 85 90
TR ! Tt/ 1t \ /

VL

10 151 18 || 19 || 20

65

80

85

90

Now delete 40

80
// \
19 30 60 100 120 140
" \ N
10 15 18 19 20 40 50 60 65 80 85 90
TR av. Tt/ 1t \ /
/| \ // / K
10| |15 18] 19 | 20 40 \50 60 || 65|/ 80| |85/ |90

After deleting 40
Rotation not possible
Need to merge nodes

80

19 30 60 100 120 140

10

10

Final tree

80

—

19 60

10

15

18

19 20 50

/ ~

10

15

\ /]

18

19

100 120 140

N ~
60 65 80 85 90
|\ /
v \

50 || 60|65 80| (85| |90

* Default index structure on most DBMSs

* Very effective at answering ‘point’ queries: sid = 80

* Effective for range queries: 50 < age AND age < 100

* Less effective for multirange: 50<age<100 AND 2018<started<2020

