
CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing

DePaul University

DBMS Architecture: Process Manager

Parser

Query Rewrite

Optimizer

Executor

Access Methods

Lock Manager

Buffer Manager

Log Manager

Admission Control

Connection Manager

Memory Mgr.

Disk Space Mgr.

Admin Utilities

Storage Manager

• Process data with a
simple query.

• Access methods:
Organize data to
support fast access to
desired subsets of
records.

• Buffer manager: Caches
data in memory.
Reads/writes data
to/from disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Executor

Access Methods:
HeapFile

Buffer Manager

Disk Space Mgr.

Hard Disk Mechanism

Terminology
• Sector or Block – the smallest unit that can

be read or written. Often 512 bytes.
• Track – all blocks that form a ring on a disk

surface that can be read without moving the
head.

• Cylinder – all tracks on all surfaces, one on
top of another, that can be read without
moving the head.

Disk Operation
To read (or write) data to the disk:

• The arm containing the read/write
heads must be moved to the proper
radius from the center.

• The system must wait for the data to
rotate under the read head.

• The data is read as it passes under the
read head.
• The data is checked and then passed

to the I/O controller.

Disk times
• Seek time: Time taken to move the disk head

to the track on which the desired block is
located

• Rotational delay: Waiting time for the desired
block to rotate under the disk head.
– Time required for half a rotation on average
– Usually less than seek time

• Transfer time: time to actually read or write
the data in the block once the head is
positioned.

Disk Time
• Reading or writing a disk block is an I/O

operation.
• Time to read or write a block varies,

depending on the location of the data:
Access time = seek time + rotational delay +

transfer time

Database Storage

• Typically, each table/relation is stored in a separate
file on the disk
• A file is a logical sequence of blocks.
• Each block consists of a collection of records, each

corresponding to one row/tuple of the relational
model.
• Each record consists of a collection of fields, each

corresponding to one column/attribute defined in
the CREATE TABLE statement.

9

Disk Manager

• Maps page number to disk block number.
• Must keep track of:
• pages that are free (no data).
• pages that have data.

• Operations: allocate pages, deallocate pages
• Design approaches: ?

OS Vs DB-native Disk Manager

• Which is better?

OS Vs DB-native Disk Manager

• Which is better?
• Tied to specific OS interface (portability issues
• File size limits; DB may want to implement files spanning disks as well
• Most importantly, dictated by the Buffer Manager.

Buffer Manager

• Keep pages in a part of memory (buffer), read directly from
there
•What happens if you bring a new page into buffer and buffer is

full: you have to evict one page
• Replacement policy:
• LRU : Least Recently Used (CLOCK)
• MRU: Most Recently Used
• Toss-immediate : remove a page if you know that you will not need it again
• Pinning (for recovery, index based processing, etc)

Storage Manager

• Process data with a
simple query.

• Access methods:
Organize data to
support fast access to
desired subsets of
records.

• Buffer manager: Caches
data in memory.
Reads/writes data
to/from disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Executor

Access Methods:
HeapFile

Buffer Manager

Disk Space Mgr.

Buffer Manager

CSE 544 - Fall 2007

Buffer Manager

Disk

Main

memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds

to 1 disk block

Disk is a collection

of blocks

Disk space manager

Buffer pool manager

Files and access methods

MPCS 53003

Data structures in Buffer Manager

• Frame ID that is uniquely associated with a memory address
• Page ID for determining which page of a table a frame currently contains
• Dirty Bit for verifying whether or not a page has been modified
• Pin Count for tracking the number of requestors currently using a page

IntegerInteger Bit

Cache Replacement Policy

• If the page does not exist in the buffer pool and there is still space,
the next empty frame is found and the page is read into that frame.
The page’s pin count is set to 1 and the page’s memory address is
returned.
• In the case where the page does not exist and there are no empty

frames left, a replacement policy must be used to determine which
page to evict.

Cache Replacement Policy

• Which next page will be read?
• Cannot determine apriori
• Depends on page access patterns

• What is an optimal policy?

Measure of a Cache Replacement Policy

• A page hit is when a requested page can be found in memory without
having to go to disk.
• Each page miss incurs an additional IO cost.
• The hit rate for an access pattern is defined as : # of page hits / # of

page accesses.

Least Recently Used

• Commonly used
• When new pages need to be read into a full buffer pool, the least

recently used unpinned page which has pin count = 0 and the lowest
value in the Last Used column is evicted.

Example

• Buffer size of 3
• 5,6,7,3,4,5,6,2,3,4,8,3,4,4

• Bad example of LRU?

Cache Replacement Policy

• If the page does not exist in the buffer pool and there is still space,
the next empty frame is found and the page is read into that frame.
The page’s pin count is set to 1 and the page’s memory address is
returned.
• In the case where the page does not exist and there are no empty

frames left, a replacement policy must be used to determine which
page to evict.
• If the dirty bit is set write the evicted page to disk

• In either case, bring the new page (overwrite the existing page) and
increment pin count

Few other considerations

• What if no page in buffer pool has pin count of 0 and a page not in
the BufferManager is requested?

• What if different transactions attempt to modify the same page?

• Why not use OS buffer management?

Storage Manager

• Process data with a
simple query.

• Access methods:
Organize data to
support fast access to
desired subsets of
records.

• Buffer manager: Caches
data in memory.
Reads/writes data
to/from disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Executor

Access Methods:
HeapFile

Buffer Manager

Disk Space Mgr.

Unordered Files (Heap File)
• No particular order maintained on the records
• Pages no control anyways.
• Unordered collection of records
• Each record in a heap file has a unique record

identifier (rid)
• Typically, RID = (PageID, SlotNumber) <p,n>
• Can identify disk address of page containing record by

using rid

25

Unordered Files (Heap File)
• No particular order maintained on the records
• Insertions done at the end of the file (O(1))
• Deletions can be done efficiently provided you know the

row to delete. Then (O(1))
• move last element in file to replace deleted element

• Searching for a record needs linear search (O(n))
• n/2 records read on average, n in worst case

• Updating a record may be costly also (O(n))
• O(1) if you do not have to search for the record

26

Heap File Implementation 1

CSE 544 - Fall 2007

Heap File Implementation 1

Header

page

Data

page

Data

page

Data

page

Data

page

Data

page

Data

page

Linked list of pages:

Data

page

Data

page

Full pages

Pages with some free space

Heap File Implementation 2

CSE 544 - Fall 2007

Heap File Implementation 2

Data

page

Data

page

Data

page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.

Faster inserts for variable-length records

Record Representation

• Fixed-Length Records
• Example: Account(account-number char(10),

branch-name char(20), balance real)

Each record is 38 bytes.
Store them sequentially, one after the other
Record1 at position 0,
Record2 at position 38,
Record3 at position 76, etc.

Table size/Compactness -
(~350 bytes)

29

Fixed-Length Records
• Store record i starting from byte n * (i – 1),

where n is the size of each record.
• Record access is simple but records may cross blocks
• Modification: do not let records cross block boundaries

• Insertion of record i: Add at the end
• Deletion of record i: Two alternatives:

• move records:
1. i + 1, . . ., n to i, . . . , n – 1
2. record n to i

• do not move, but link free records on a free list

30

Free Lists
• A 2nd approach: FLRecords with Free Lists
• Store the address of the first deleted record in the file header.
• Use the first record to store the address of the second deleted record,

and so on
• Can think of these stored addresses as pointers since they “point” to

the location of a record.

Better handling of
insert/delete

Less compact

31

Variable-Length Records
• 3rd approach: Variable-length records
• Storage of multiple record types in a file.
• Record types that allow variable lengths

• Byte string representation
• Attach an end-of-record (^) control character to the end

of each record
• Difficulty with deletion (leaves holes)
• Difficulty with growth

3 ^ ^ ^

Field
Count

R1 R2 R3

Variable-Length Records: Slotted Page Structure

• 4th approach VLRrecords-SP
• Slotted page header contains:
• number of record entries
• end of free space in the block
• location and size of each record

• Records stored at the bottom of the page
• External tuple pointers point to record pointers:

rec-id = <page-id, slot#>

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Insertion: 1) Use Free Space Pointer (FP) to find space and insert
2) Find available ptr in the directory (or create a new one)
3) adjust FP and number of records

Deletion ?

Variable-Length Records (Cont.)
• Fixed-length representation:

• reserved space
• pointers

• 5th approach: Fixed Limit Records (for VLRrecords)
• Reserved space – can use fixed-length records of a known

maximum length; unused space in shorter records filled
with a null or end-of-record symbol.

Pointer Method

• 6th approach: Pointer method
• Pointer method

• A variable-length record is represented by a list of fixed-length
records, chained together via pointers.

• Can be used even if the maximum record length is not known

Pointer Method (Cont.)
• Disadvantage to pointer structure; space is

wasted in all records except the first in a chain
• Solution is to allow two kinds of block in file:
• Anchor block – contains the first records of chain
• Overflow block – contains records other than those

that are the first records of chains.

Data Dictionary Storage

• Information about relations
• names of relations
• names and types of attributes of each relation
• names and definitions of views
• integrity constraints

• User and accounting information, including passwords
• Statistical and descriptive data

• number of tuples in each relation

• Physical file organization information
• How relation is stored (sequential/hash/…)
• Physical location of relation

• operating system file name or
• disk addresses of blocks containing records of the relation

• Information about indices

Data dictionary (also called system catalog) stores
metadata: that is, data about data, such as:

Data dictionary storage

• Stored as tables
• E-R diagram
• Relations, attributes, domains
• Each relation has name, some attributes
• Each attribute has name, length and domain
• Also, views, integrity constraints, indices
• User info (authorizations, etc.)
• statistics

Data Dictionary Storage (Cont.)
• A possible catalog representation:

Relation-metadata = (relation-name, number-of-attributes,
storage-organization, location)

Attribute-metadata = (attribute-name, relation-name, domain-type,
position, length)

User-metadata = (user-name, encrypted-password, group)
Index-metadata = (index-name, relation-name, index-type,

index-attributes)
View-metadata = (view-name, definition)

Example

• Consider a disk with a sector size of 1024 bytes, 2000 tracks per surface, 50
sectors per track, five double-sided platters, and average seek time of 10 msec.
Suppose that a file containing 100,000 records of 100 bytes each is to be stored
on such a disk and that no record is allowed to span two blocks. Dis rotates at
5400 rpm.
• 1. How many records fit onto a block?
• 2. How many blocks are required to store the entire file?
• 3. If the file is arranged sequentially on disk, how many surfaces are needed?
• 4. How many records can you store worth 100 bytes?
• 5. Time to sequentially read?
• 6. Time to read each block in a random order? Assume that each block request

incurs the average seek time and rotational delay.

Overview	of	SimpleDB

8

Database

• A single database
• One schema
• List of tables

• References to major components
• Global instance of Catalog
• Global instance of BufferPool

Database

•A	single	database
• One	schema
• List	of	tables

•References	to	major	components
• Global	instance	of	Catalog
• Global	instance	of	BufferPool

9

Catalog

• Stores metadata about tables in the database
• void addTable(DbFile d, TupleDesc d)
• DbFile getTable(int tableid)
• TupleDesc getTupleDesc(int tableid) •...

• NOT persisted to disk
• Catalog info is reloaded every time SimpleDB starts up

Catalog

•Stores	metadata	about	tables	in	the	database
• void	addTable(DbFile d,	TupleDesc d)
• DbFile getTable(int tableid)
• TupleDesc getTupleDesc(int tableid)
• …

•NOT	persisted	to	disk
• Catalog	info	is	reloaded	every	time	SimpleDB starts	up

10

• The ONLY bridge between data-processing operators and actual data
files
• Strict interface for physical independence!
• Data files are never accessed directly
• Later labs:
• Locking for transactions
• Flushing pages for recovery

BufferPool

•The	ONLY	bridge	between	data-processing
operators	and	actual	data	files	
• Strict	interface	for	physical	independence!

•Data	files	are	never	accessed	directly
• Later	labs:
• Locking	for	transactions
• Flushing	pages	for	recovery

11

BufferPool

•The	ONLY	bridge	between	data-processing
operators	and	actual	data	files	
• Strict	interface	for	physical	independence!

•Data	files	are	never	accessed	directly
• Later	labs:
• Locking	for	transactions
• Flushing	pages	for	recovery

11

Data Types

• Integer:
• Type.INT_TYPE
• 4 byte width

• Fixed-length Strings
• Type.STRING_TYPE
• 128 bytes long (Type.STRING_LEN)
• Do not change this constant!

OpIterator

• Ancestor class for all operators
• Join, Project, SeqScan, etc...

• Each operator has methods:
• open(), close(), getTupleDesc(), hasNext(), next(), rewind()

• Iterator model: chain iterators together

OpIterator

•Ancestor	class	for	all	operators
• Join,	Project,	SeqScan,	etc…

•Each	operator	has	methods:
• open(),	close(),	getTupleDesc(),	hasNext(),	next(),	rewind()

• Iterator	model:	chain	iterators	together

13

SimpleDB Architecture

6

Query Execution In SimpleDB

CSE 444 - Spring 2021January 10, 2022

HeapFile for R

Buffer
Pool

Manager

6Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

Read/write pages from disk

Database shares
a single cache in Buffer Pool

HeapFile for S

HeapFile for T

HeapFileN…

Heap files for
other relations

bp.getPage()

hf.readPage()

SeqScan

hf.next()

Query Execution

Parser

Query Rewrite

Optimizer

Executor

Query Evaluation Steps

CSE 544 - Fall 2007

Query Evaluation Steps

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query

optimization

Logical

plan

Physical

plan

MPCS 53003

SQL Review

Relational Algebra

• Relational algebra (RA) is a query language for the relational model
with a solid theoretical foundation.
• Relational algebra is not visible at the user interface level (not in any

commercial RDBMS, at least).
• However, almost any RDBMS uses RA to represent queries internally

(for query optimization and execution).
• Knowledge of relational algebra will help in understanding SQL and

relational database systems in general.

Algebra equivalence

• In mathematics, an algebra is a
• set (the carrier), and
• operations that are closed with respect to the set.
• Example: (N, {∗, +}) forms an algebra.

• In case of RA,
• the carrier is the set of all finite relations.

Bank Database Schema

Account

bname acct_no balance

Depositor

cname acct_no

Customer

cname cstreet ccity

Branch

bname bcity assets

Borrower

cname lno

Loan

bname lno amt

Bank Database
Account

bname acct_no balance
Downtown

Mianus
Perry
R.H.

Brighton
Redwood
Brighton

A-101
A-215
A-102
A-305
A-201
A-222
A-217

500
700
400
350
900
700
750

Depositor

cname acct_no
Johnson
Smith
Hayes
Turner

Johnson
Jones

Lindsay

A-101
A-215
A-102
A-305
A-201
A-217
A-222

Customer

cname cstreet ccity
Jones
Smith
Hayes
Curry

Lindsay
Turner

Williams
Adams
Johnson
Glenn
Brooks
Green

Main
North
Main
North
Park

Putnam
Nassau
Spring
Alma

Sand Hill
Senator
Walnut

Harrison
Rye

Harrison
Rye

Pittsfield
Stanford
Princeton
Pittsfield
Palo Alto
Woodside
Brooklyn
Stanford

Branch

bname bcity assets
Downtown
Redwood

Perry
Mianus

R.H.
Pownel

N. Town
Brighton

Brooklyn
Palo Alto
Horseneck
Horseneck
Horseneck
Bennington

Rye
Brooklyn

9M
2.1M
1.7M
0.4M
8M

0.3M
3.7M
7.1M

Borrower

cname lno
Jones
Smith
Hayes

Jackson
Curry
Smith

Williams
Adams

L-17
L-23
L-15
L-14
L-93
L-11
L-17
L-16

Loan

bname lno amt
Downtown
Redwood

Perry
Downtown

Mianus
R.H.
Perry

L-17
L-23
L-15
L-14
L-93
L-11
L-16

1000
2000
1500
1500
500
900

1300

Relational Algebra
• Basic Operators

1. select (σ)
2. project (p)
3. union (È)
4. set difference (–)
5. cartesian product (´)
6. rename (ρ)

• Closure Property

Relational
Operator

Relation

Relation

Relation
Relational
Operator

Select (σ)
Notation: σpredicate (Relation)

Relation: Can be name of table or result of another query
Predicate:

Select rows from a relation based on a predicate

2. Complex
• predicate AND predicate
• predicate OR predicate
• NOT predicate

Idea:

1. Simple
• attribute1 = attribute2
• attribute = constant value (also: ≠, <, >, ≤, ≥)

Select (σ)

bname bcity assets
Downtown
Brighton

Brooklyn
Brooklyn

9M
7.1M

bname bcity assets
Downtown Brooklyn 9M

σ bcity = “Brooklyn” (branch) =

σ assets > $8M (σ bcity = “Brooklyn” (branch)) =

Notation: σpredicate (Relation)

(same as σ assets > $8M AND bcity = “Brooklyn” (branch))

Project (p)

cstreet ccity
Main
North
Park

Putnam
Nassau
Spring
Alma

Sand Hill
Senator
Walnut

Harrison
Rye

Pittsfield
Stanford
Princeton
Pittsfield
Palo Alto
Woodside
Brooklyn
Stanford

Notation: pA1, …, An (Relation)
• Relation: name of a table or result of another query
• Each Ai is an attribute
• Idea: p selects columns (vs. σ which selects rows)

p cstreet, ccity (customer) =

Project (p)

bcity
Brooklyn

Horseneck

p bcity (σassets > 5M (branch)) =

Question: Does the result of Project always have the same number
of tuples as its input?

Union (È)

cname
Johnson
Smith
Hayes
Turner
Jones

Lindsay
Jackson
Curry

Williams
Adams

Notation: Relation1 È Relation2

Example:

(p cname (depositor)) È (p cname (borrower)) =

R È S valid only if:

1. R, S have same number of columns (arity)
2. R, S corresponding columns have same domain (compatibility)

Depositor

cname acct_no

Borrower

cname lno

Schema:

Set Difference (–)

bname lno amount
Downtown
Redwood
Perry

Downtown
Perry

L-17
L-23
L-15
L-14
L-16

1000
2000
1500
1500
1300

bname acct_no balance
Mianus

Brighton
Redwood
Brighton

A-215
A-201
A-222
A-217

700
900
700
850

Notation: Relation1 - Relation2

R - S valid only if:

1. R, S have same number of columns (arity)
2. R, S corresponding columns have same domain (compatibility)

Example:
(p bname (σamount ≥ 1000 (loan))) – (p bname (σ balance < 800 (account))) =

–
bname

Downtown
Perry

=

Cartesian Product (´)

depositor.
cname

acct_no borrower.
cname

lno

Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Smith

…

A-101
A-101
A-101
A-101
A-101
A-101
A-101
A-101
A-215

…

Jones
Smith
Hayes

Jackson
Curry
Smith

Williams
Adams
Jones

…

L-17
L-23
L-15
L-14
L-93
L-11
L-17
L-16
L-17
…

Notation: Relation1 ´ Relation2

Example:

R ´ S like cross product for mathematical relations:
• every tuple of R appended to every tuple of S

depositor ´ borrower =

How many tuples in
the result?

A: depositor (7) *
borrower (8) = 56

Rename (ρ)

Notation: r identifier (Relation)
renames a relation, or

Notation: r identifier0 (identifier1, …, identifiern) (Relation)
renames relation and columns of n-column relation

Use:
massage relations to make È, – valid, or ´ more readable

Rename (ρ)
Notation: r identifier0 (identifier1, …, identifiern) (Relation)

Example:

r res (dcname, acctno, bcname, lno) (depositor ´ borrower) =

dccname acctno bcname lno

Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Johnson
Smith

…

A-101
A-101
A-101
A-101
A-101
A-101
A-101
A-101
A-215

…

Jones
Smith
Hayes

Jackson
Curry
Smith

Williams
Adams
Jones

…

L-17
L-23
L-15
L-14
L-93
L-11
L-17
L-16
L-17
…

Example Query in RA
•Determine lno for loans that are for an amount that is
larger than the amount of some other loan. (i.e. lno for
all non-minimal loans)

Temp1 ß …
Temp2 ß … Temp1 …
…

Can do in steps:

Example Query in RA

lno amt
L-17
L-23
L-15
L-14
L-93
L-11
L-16

1000
2000
1500
1500
500
900
1300

1. Find the base data we need

Temp1 ß p lno,amt (loan)

2. Make a copy of (1)

Temp2 ß ρ Temp2 (lno2,amt2) (Temp1) lno2 amt2
L-17
L-23
L-15
L-14
L-93
L-11
L-16

1000
2000
1500
1500
500
900
1300

Example Query in RA

lno amt lno2 amt2
L-17
L-17
…

L-17
L-23
L-23
…

L-23
…

1000
1000
…

1000
2000
2000
…

2000
…

L-17
L-23
…

L-16
L-17
L-23
…

L-16
…

1000
2000
…

1300
1000
2000
…

1300
…

3. Take the cartesian product of 1 and 2

Temp3 ß Temp1 ´ Temp2

Example Query in RA

• p lno (σamt > amt2 (p lno,amt (loan) ´ (ρTemp2 (lno2,amt2) (p lno,amt (loan)))))

4. Select non-minimal loans

Temp4 ß σamt > amt2 (Temp3)

5. Project on lno

Result ß p lno (Temp4)

… or, if you prefer…

Review

Find the names of customers who have both accounts and loans

T1 ß ρ
T1 (cname2, lno)

(borrower)

T2 ß depositor ´ T1

T3 ß σcname = cname2 (T2)
Result ß π cname (T3)

Above sequence of operators (ρ, ´, σ) very common.

Express the following query in the RA:

Motivates additional (redundant) RA operators.

Relational Algebra
Redundant Operators

4. Update (ß) (we’ve already been using)

2. Generalized Projection (π)

!"1. Natural Join ()

!" !" !"3. Outer Joins ()

• Redundant: Above can be expressed in terms of minimal RA
à e.g. depositor borrower =

π …(σ…(depositor ´ ρ…(borrower)))

• Added for convenience

!"

Natural Join

Idea: combines ρ, ´, σ

A B C D
1
2
2
3

α
α
α
β

+
-
-
+

10
10
20
10

E B D
‘a’
‘a’
‘b’
‘c’

α
α
β
β

10
20
10
10

r s

A B C D E
1
2
2
3
3

α
α
α
β
β

+
-
-
+
+

10
10
20
10
10

‘a’
‘a’
‘a’
‘b’
‘c’

=

Relation1 Relation2Notation:

!"

πcname,acct_no,lno (σcname=cname2 (depositor ´ ρt(cname2,lno) (borrower)))
≡

!"depositor borrower

!"

Generalized Projection

p e1,…,en
(Relation)

e1,…,en can include arithmetic expressions – not just attributes

cname limit balance
Jones
Turner

5000
3000

2000
2500

credit =

π cname, limit - balance (credit) =
cname limit-balance
Jones
Turner

3000
500

Notation:

Example

Then…

Outer Joins

bname lno amt
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

loan =
cname lno
Jones
Smith
Hayes

L-170
L-230
L-155

borrower =

=
bname lno amt cname

Downtown
Redwood

L-170
L-230

3000
4000

Jones
Smith

Join result loses…
à any record of Perry
à any record of Hayes

Motivation:

!"loan borrower =

Outer Joins

bname lno amt
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

loan =
cname lno
Jones
Smith
Hayes

L-170
L-230
L-155

borrower =

bname lno amt cname
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

Jones
Smith

┴

• preserves all tuples in left relation
1. Left Outer Join ()!"

┴ = NULL

loan borrower =!"

Outer Joins

bname lno amt
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

loan =
cname lno
Jones
Smith
Hayes

L-170
L-230
L-155

borrower =

bname lno amt cname
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

Jones
Smith

┴

• preserves all tuples in left relation
1. Left Outer Join ()!"

┴ = NULL

loan borrower =!"

Outer Join (5)

237

Join vs. Outer Join

Is there any di↵erence between STUDENTS on RESULTS and
STUDENTS on RESULTS?
(Can you tell without looking at the table states?)

• Note: Outer join is a derived operation (like on,\), i.e., it
can simulated using the five basic relational algebra operations.

• Consider R(A,B) and S(B,C). Then

R on S ⌘ (R on S) [
�
(R � ⇡A,B(R on S))⇥ {(C:null)}

�

• SQL-92 provides {FULL, LEFT, RIGHT} OUTER JOIN.

Relational Algebra

238

Overview

1. Introduction; Selection, Projection

2. Cartesian Product, Join

3. Set Operations

4. Outer Join

5. Formal Definitions, A Bit of Theory

Outer Joins

bname lno amt cname
Downtown
Redwood

┴

L-170
L-230
L-155

3000
4000

┴

Jones
Smith
Hayes

!"

bname lno amt
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

loan =
cname lno
Jones
Smith
Hayes

L-170
L-230
L-155

borrower =

• preserves all tuples in right relation
2. Right Outer Join ()

┴ = NULL

loan borrower =!"

Outer Joins

bname lno amt
Downtown
Redwood

Perry

L-170
L-230
L-260

3000
4000
1700

loan =
cname lno
Jones
Smith
Hayes

L-170
L-230
L-155

borrower =

• preserves all tuples in both relations
3. Full Outer Join ()

┴ = NULL

!"

bname lno amt cname
Downtown
Redwood

Perry
┴

L-170
L-230
L-260
L-155

3000
4000
1700

┴

Jones
Smith

┴
Hayes

loan borrower =!"

Update

1. Deletion: r ß r – s
e.g., account ß account – σbname=Perry (account)
(deletes all Perry accounts)

2. Insertion: r ß r È s
e.g., branch ß branch È {(Waltham, Boston, 7M)}
(inserts new branch with
bname = Waltham, bcity = Boston, assets = 7M)

3. Update: r ß πe1,…,en (r)

e.g., depositor ß depositor È (ρtemp (cname,acct_no) (borrower))
(adds all borrowers to depositors, treating lno’s as acct_no’s)

e.g., account ß πbname,acct_no,bal*1.05 (account)
(adds 5% interest to account balances)

Identifier ß QueryNotation:
Common Uses:

Example 1

• Find the bars that are either on Maple street or sell Bud for less than
$3.
• Sells(bar, beer, price)
• Bars(name, addr)

Example 1

• Find the bars that are either on Maple street or sell Bud for less than
$3.
• Sells(bar, beer, price)
• Bars(name, addr)

Example 2

• Find the bars that sell two different beers at the same price�
• Sells(bar, beer, price)

Example 2

• Find the bars that sell two different beers at the same price�
• Sells(bar, beer, price)

Non RA operators

• Distinct (duplicate elimination)
• Order By (sort)
• Group By (aggregate)

Aggregate Functions and Operations
} An aggregate function takes a collection of values and

returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

} Aggregate operation in relational algebra
G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

◦ E is any relational-algebra expression
◦ G1, G2 …, Gn is a list of attributes on which to group

(can be empty)
◦ Each Fi is an aggregate function
◦ Each Ai is an attribute name

Aggregate Operation – Example
} Relation r:

A B

a
a
b
b

a
b
b
b

C

7
7
3
10

g sum(c) (r)
sum-C

27
No grouping

Aggregate Operation – Example

} Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance
Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name sum(balance)
Perryridge
Brighton
Redwood

1300
1500
700

Aggregate Functions (Cont.)

Result of aggregation does not have a name
• Can use rename operation to give it a name
• For convenience, we permit renaming as part of aggregate

operation

branch-name g sum(balance) as sum-balance (account)

Interator Interface

Iterator

• A group of four methods that allow a consumer of the result of
physical operator to get the result one tuple at a time.

• Open(): starts the process of getting tuples
• hasNext(): determines if there is another tuple
• GetNext(): gets the next tuple and adjusts data structures to get the

next tuple
• Close(): closes
• Which operator follows the Iterator interface: Table Scan Vs Sort

SQL to RA

• Product(pid, name, price)
• Purchase(pid, cid, store)
• Customer(cid, name, city)

• Query:
• SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid AND y.cid = y.cid AND x.price > 100 AND z.city =
‘Chicago’

RA Expression

• Product(pid, name, price)
• Purchase(pid, cid, store)
• Customer(cid, name, city)

Query Execution

• Given a RA expression, the job of the query optimizer is to come up
with a query evaluation plan that computes the same result as the
given expression and is the least costly way of generating the result.

