
CSC553 Advanced Database
Concepts

Tanu Malik
School of Computing

DePaul University

Syllabus and Course Admininstration

• https://dice.cs.depaul.edu

What is a database?

3

What is a database?

• A large collection of related data
• A database is:
• Persistent: stored on a stable medium
• Shared: multiple (simultaneous) users
• Interrelated: forms a bigger picture

• Models real world information

4

Database Management System
• DBMS is the software component that allows

creating/maintaining/controlling access to a
database
• Why not store data in a flat file?
• E.g., .txt or .xls
• Least amount of work!

5

Data retrieval

• Query = declarative data retrieval
• describes what data to retrieve, not how to retrieve it
• Example: Give me the students with GPA > 3.5 VS
• Scan the student file and retrieve the records with GPA >

3.5

• Why?
• Easier to write
• More efficient to execute

6

What is a data model?

A Data Model

• A notation for describing data or information.
• Consists of 4 parts:
• Structure of the data

• Data structures and relationships
• Operations on the data

• programming operations
• Constraints on the data

• Describe limitations on data
• Persistence of data

• Data is stored permanently on disk

8

Types of Data Models

• Based on files
• Filesystem

• Based on tables
• Relational data model

• Based on trees and graphs
• Semistructured data model

9

Managing Data in Files

• How to find a particular record?
• Find all students who joined later than 2013
• Find all students who live in Chicago

• What if two threads try to write to the same file at the same time?
• How to ensure that the studentid remains same in all files?
• What is data is overwritten?

10

DBMS Evolution

• 1960s: Codasyl (network), IMS (hierarchical)
• 1970s: Relational Model (System R, Ingres)
• 1980: SQL as a language for RDBMS
• 1990: Object-Relational Model (disk-based databases)
• 2000’s: NoSQL
• 2010: NewSQL (Main-memory databases)

Relational Model

• Very popular
• Provides program-data independence
• Create a 3 level architecture

Program-Data Independence
• View-Level
• What data is exposed to users, what are they allowed to see

• Logical Level
• Definition of tables, attributes, constraints, etc

• Physical Level
• Data stored in files, location of files, indexed, storage layout

13_

3-level architecture

View 1 View 2

Table

Storage

Program-Data Independence
• Logical Data Independence
• Modify table definitions without changing view used in an

application
• Add/drop/rename attributes from a table
• Rename a table

• Physical Data Independence
• Modify the structure and organizaton of physical storage

with changing logical schema
• Change the type of index
• Compress a table when it is stored on disk
• Move a table to another disk/machine

Relational Model

A relational model stores data in
relations.
Relations are also known as tables.

16

Definition: A RELATION is A 2-Dimensional
DATA STRUCTURE

Attribute2Attribute1 Attribute4 Attribute5

Tuple1_2

Tuple2_2

Tuple3_2

Tuple1_1

Tuple2_1

Tuple3_1

Tuple1_3

Tuple2_3

Tuple3_3

Tuple1_4

Tuple2_4

Tuple3_4

Tuple1_5

Tuple2_5

Tuple3_5

Attribute3 Attribute6

Tuple1_6

Tuple2_6

Tuple3_6

Columns

Rows

RelationName

17

RelationName, Attribute Names, Data tuples

Data tuples

A RELATION is A 2-Dimensional
DATA STRUCTURE

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

Chicago

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

22

23

25

Columns

Rows

Student

18

Properties: Attributes and Tuples

• Columns of a relation are named by attributes
• Appear as the first row at the top.
• Attributes do not store units.

• Rows of a relation (except first row) are called tuples
• The first row is an attribute row and is typically not part of

tuples.

19

Schema of a Relation

• Schema: the (i) name of the relation and (ii) the set of attributes
for a relation is called the schema for that relation.

• Provides a concise representation of the relation without the
data.

• Example:
Schema = Student(Sid, Firstname, Lastname, City, Started, Age)

20

Domain of An Attribute

• Each attribute is associated with a domain or an elementary type.
• Domains often implicit in schema
• Example:
Student(SID:integer; FirstName: string; LastName: string; City: string;
Started: integer; Age: integer)

21

The Following is not an
Instance Of The Student Relation

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

abcdef

192-83-290

321-12-312

ghijk

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

12345

Palo Alto

Naperville

Chicago

2010

2010

Abc_34

2013

2015

Lastname Age

21

21

22

23

25

22

TWO Domain Requirements: #1

1. Elementary type of domain always includes the
special NULL, which is used if a value of a domain
is unknown or missing.

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

NULL

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

NULL

23

25

Student

23

TWO DOMAIN REQUIREMENTS: #2

2. Domain can only be atomic i.e., it can only be an elementary type
such as String, Integer, Char, Float, Date.

ÞDomain cannot be a record structure, set, array, list, or any data
structure whose values can be broken to smaller components.

24

Example

• Suppose we must represent an additional attribute “Contact
Number” in Student table.
• Further, a student may have more than one contact numbers.
• What domain to assign to Contact Number attribute?

• Can we say:
Student (SID:Integer, FistName: string; LastName; string; City: String;
Started:Integer; Age: Integer; Contact Number: List of Integers);

25

AN INVALID RELATION

• Student(SID:integer; FirstName: string; LastName: string; City: string;
Started: integer; Age: integer; ContactNumber: List of Integers)

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

NULL

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

NULL

23

25

Student

ContactNumber

[773-712-3456
312-721-4561]
[312-362-1121,
NULL]
[312-362-3546,
312-462-3546]
[773-752-3561,
NULL]
[773-386-5634,
NULL

TWO DOMAIN REQUIREMENTS: #2

26

Representation 1: ADD COLUMN

• A valid relational representation
• Student(SID:integer; FirstName: string; LastName: string;

City: string; Started: integer; Age: integer; CN1: Integer;
CN2: Integer) FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

NULL

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

NULL

23

25

Student

CN1 CN2

773-712-3456

312-362-1121

312-362-3546

773-752-3561

773-386-5634

312-721-4561

NUL
L

312-462-3546

NUL
L

NUL

TWO DOMAIN REQUIREMENTS: #2

27

Representation II: Add ROW
• Another valid relational representation
• Student(SID:integer; FirstName: string; LastName:

string; City: string; Started: integer; Age: integer;
CN: Integer)

FirstnameSID City Started

Johnson

Johnson

Smith

Chan

Chan

Marcus
Deepa

192-83-332

192-83-332

019-28-553

192-83-290

192-83-290

321-12-312
019-28-321

Epel

Epel

Shaw

Gloria

Gloria

Brenningan
Patel

Palo Alto

Palo Alto

NULL

Palo Alto

Palo Alto

Naperville
Chicago

2010

2010

2010

2011

2011

2013
2015

Lastname Age

21

21

21

NULL

NULL

23
25

Student

CN

773-712-3456

312-721-4561

312-362-1121

312-362-3546

312-462-3546

773-752-3561
773-386-5634

TWO DOMAIN REQUIREMENTS: #2

28

Tuple Requirement: Relations are Sets

• Relations are set of tuples/rows and not a list of tuples/rows.
ÞThe order in which tuples are listed in a relation does not matter
ÞThe order in which columns are listed in a relation does not matter

29

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

NULL

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

NULL

23

25

FirstnameSID City Started

Johnson

Smith

Marcus

Chan

Deepa

192-83-332

019-28-553

321-12-312

192-83-290

019-28-321

Epel

Shaw

Brenningan

Gloria

Patel

Palo Alto

NULL

Naperville

Palo Alto

Chicago

2010

2010

2013

2011

2015

Lastname Age

21

21

23

NULL

25

Different tuple orders

30

FirstnameSID City Started

Johnson

Smith

Chan

Marcus

Deepa

192-83-332

019-28-553

192-83-290

321-12-312

019-28-321

Epel

Shaw

Gloria

Brenningan

Patel

Palo Alto

NULL

Palo Alto

Naperville

Chicago

2010

2010

2011

2013

2015

Lastname Age

21

21

NULL

23

25

FirstnameSID CityStarted

Johnson

Smith

Marcus

Chan

Deepa

192-83-332

019-28-553

321-12-312

192-83-290

019-28-321

Epel

Shaw

Brenningan

Gloria

Patel

Palo Alto

NULL

Naperville

Palo Alto

Chicago

2010

2010

2013

2011

2015

Lastname Age

21

21

23

NULL

25

Different column orders

31

Relation Constraints
Primary Key (PK)
• A set of attributes forms a primary key which has unique values in

that set of attributes.
• A set of attributes forms a primary key for a relation if we do not

allow two tuples in a relation instance to have the same values in ALL
the attributes of the key.
• Student(SID, Firstname, Lastname, City, Started, Age)

32

University Database schema

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

33

Foreign key constraint

• Is a constraint from attribute(s) A of relation R1 to the primary key of
B of relation R2, the value of A for each tuple in R1 must also be the
value of B of some tuple in R2
• Attribute A is the foreign key from R1 referencing R2
• R1 = referencing relation
• R2 = referenced relation

34

University DB schema

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

Student

LastName varchar(40)

FirstName varchar(40)

SID int

SSN int

Career varchar(4)

Program varchar(10)

City varchar(40)

Started int

Course

CID int

CourseName varchar(40)

Department varchar(4)

CourseNr char(3)

Enrolled

StudentID int

CourseID int

Quarter varchar(6)

Year number(4)

StudentGroup

GID int

Name varchar(40)

PresidentID int

Founded number(4)

memberof

StudentID int

GroupID int

Joined int

35

Database Internals

DBMS Architecture: Query Processor

Parser

Query Rewrite

Optimizer

Executor

Query Evaluation Steps

CSE 544 - Fall 2007

Query Evaluation Steps

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query

optimization

Logical

plan

Physical

plan

MPCS 53003

Example Database Schema

MPCS 53003

• Supplier(sno, sname, scity, sstate)
• Part(pno, pname, psize, pcolor)
• Supply(sno, pno, price)

• View
CREATE VIEW NearbySupp As
SELECT sno, sname
FROM Supplier
Where scity = ‘Chicago’ and sstate = ‘IL’

Example Query

• Find the names of all suppliers in Seattle who supply Part 2

MPCS 53003

CSE 544 - Fall 2007

Example Query

• Find the names of all suppliers in Seattle who supply part

number 2

SELECT sname FROM NearbySupp

WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

Steps in Query Evaluation

• Step 0: admission control
• User connects to the db with username, password
• User sends query in text format

• Step 1: Query parsing
• Parses query into an internal format
• Performs various checks using catalog

• Step 2: Query rewrite
• View rewriting, flattening, etc.

MPCS 53003

Rewritten Version of Our Query

• Original Query:

• Rewritten Query:
SELECT S.sname
FROM Supplier S, Supplies U
Where S.scity = ‘Chicago’ AND S.sstate = ‘IL’
AND s.sno = U.sno AND U.sno = 2

MPCS 53003

CSE 544 - Fall 2007

Rewritten Version of Our Query

Original query:

SELECT sname

FROM NearbySupp

WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

Rewritten query:

SELECT S.sname

FROM Supplier S, Supplies U

WHERE S.scity='Seattle' AND S.sstate='WA’

AND S.sno = U.sno

AND U.pno = 2;

Continue with Query Evaluation

• Step 3: Query optimization
• Find an efficient query plan for executing the query
• We will spend a a lot of time on this topic

• A query plan is
• Logical query plan: an extended relational algebra tree
• Physical query plan: with additional annotations at each node

• Access method to use for each relation
• Implementation to use for each relational operator

MPCS 53003

DBMS Architecture: Storage Manager

Parser

Query Rewrite

Optimizer

Executor

Access Methods

Lock Manager

Buffer Manager

Log Manager

DBMS Architecture: Process Manager

Parser

Query Rewrite

Optimizer

Executor

Access Methods

Lock Manager

Buffer Manager

Log Manager

Admission Control

Connection Manager

Memory Mgr.

Disk Space Mgr.

Admin Utilities

Storage Manager

• Process data with a
simple query.

• Access methods:
Organize data to
support fast access to
desired subsets of
records.

• Buffer manager: Caches
data in memory.
Reads/writes data
to/from disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Executor

Access Methods:
HeapFile

Buffer Manager

Disk Space Mgr.

The Memory Hierarchy

MPCS 53003

Cache

Main memory

As virtual
memory

File
system

Disk

Tertiary Storage

Volatile

Non-Volatile

Disk

• Data is stored and retrieved in units called disk blocks or pages.

Unlike RAM, time to retrieve a disk page varies
depending upon location on disk.

– Therefore, relative placement of pages on disk has
major impact on DBMS performance!

Hard Disk Mechanism

Disk terminology
• Data is stored on disk in units called blocks
• Blocks are arranged in concentric rings called

tracks
• Tracks are recorded on one or both surfaces

of a platter
• Tracks with the same diameter is called a

cylinder; one track per platter surface.
• An array of disk heads one per recorded

surface is moved as a unit.

Example
• If a disk has 4 platters and 16K tracks per

surface, how many tracks are on the disk?
– 4,16K,32K,64K,128K?

Terminology
• Sector or Block – the smallest unit that can

be read or written. Often 512 bytes.
• Track – all blocks that form a ring on a disk

surface that can be read without moving the
head.

• Cylinder – all tracks on all surfaces, one on
top of another, that can be read without
moving the head.

Disk Operation
To read (or write) data to the disk:

• The arm containing the read/write
heads must be moved to the proper
radius from the center.

• The system must wait for the data to
rotate under the read head.

• The data is read as it passes under the
read head.
• The data is checked and then passed

to the I/O controller.

Disk times
• Seek time: Time taken to move the disk head

to the track on which the desired block is
located

• Rotational delay: Waiting time for the desired
block to rotate under the disk head.
– Time required for half a rotation on average
– Usually less than seek time

• Transfer time: time to actually read or write
the data in the block once the head is
positioned.

Disk Time
• Reading or writing a disk block is an I/O

operation.
• Time to read or write a block varies,

depending on the location of the data:
Access time = seek time + rotational delay +

transfer time

Seek time
• Seek Time is fixed by the design of the disk.
• Manufacturers will usually tell you the
– average seek time
– maximum seek time (from center to edge)
– time to seek to the next adjacent track.
– Average: of 4-10ms

Example

• 1 ms to move between cylinders
• 1 ms additional for moving every 4K cylinders
• Move one track: 1.00025 ms
• Move a distance of 65,536 tracks (from outer to inner) = ?

Rotational Delay
• Best case is when the data comes under the

head just as it is needed (delay is zero).
• Worst case is you just missed it and have to

wait a whole revolution. If you know the
rotational speed, you can calculate the time
(in ms) per revolution.

• Lets say the disk rotates at 7200 rpm.
• How many rotations per ms?

Rotational Delay Calculation

• 60 seconds per minute.
• 1000 ms per sec
• 1 minute has 60000 ms
• 1 min also 7200 rotations.
• So 1 rotation in 60000/7200 = 8.33ms

How many sectors?

• Files are stored in sectors or blocks on the
disk.

• The number of bytes in a sector varies per
disk but is often 4096 bytes/sector or
4KB / sector

• Number of Sectors = Filesize
(bytes/sector)

Transfer time

• The transfer time is determined by how long it takes
the data to travel under the head.

• The fraction of sectors on the track that are being
read times the rotation time gives the transfer time.

• (Num of sectors) * ms/rotation = transfer_time

Example
• How long does it take to read one sector/block of

data on the average?
– Rotational Speed 10,000 RPM
– Average Seek Time 4.5 ms
– Bytes / sector 512
– Sectors / track 63

• How long does it take to read two sectors?

• Read Example 13.2 from book.

Logical Vs Physical

• Many disks present the OS with a logical
layout that is different from the physical
layout.

• Most modern disks use Logical Block
Addressing (LBA) to hide the physical layout.

• LBA represents the disk as a sequential list of
blocks.

Database Storage

• Typically, each table/relation is stored in a separate
file on the disk
• A file is a logical sequence of blocks.
• Each block consists of a collection of records, each

corresponding to one row/tuple of the relational
model.
• Each record consists of a collection of fields, each

corresponding to one column/attribute defined in
the CREATE TABLE statement.

64

Database File

• Each record in a DB file has a unqiue record identifier (rid)
• Typically RID = (PageID, SlotNumber) <p,n>
• Can identify disk address of page containing record by using rid

Example

• Given a Table T with 1M records, size of tuple 20 bytes, and a disk
block size of 512bytes, how many disk blocks will T occupy?

Disk Blocks
• Basic unit of data for disk I/O is a block
• Every read/write involves an entire block

• The blocking factor (bfr) is the number of records that
can fit into a block
• If B = bytes per block and R = bytes per record, then bfr =

floor(B/R), as long as each record is contained entirely in
one block
• For records that are divided among blocks, bfr is just the

average number of records in each block

67

Terminology: Pages Vs Blocks

• Each device may support a different block size
• Pages are virtual blocks.
• With pages the OS can deal with a fixed size page, rather than try to

figure out how to deal with blocks of different sizes.
• Pages act as sort of a middleman between operating systems and

hardware drivers

Unordered Files (Heap File)
• No particular order maintained on the records
• Pages no control anyways.
• Unordered collection of records
• Each record in a heap file has a unique record

identifier (rid)
• Typically, RID = (PageID, SlotNumber) <p,n>
• Can identify disk address of page containing record by

using rid

69

Unordered Files (Heap File)
• No particular order maintained on the records
• Insertions done at the end of the file (O(1))
• Deletions can be done efficiently provided you know the

row to delete. Then (O(1))
• move last element in file to replace deleted element

• Searching for a record needs linear search (O(n))
• n/2 records read on average, n in worst case

• Updating a record may be costly also (O(n))
• O(1) if you do not have to search for the record

70

Heap File Implementation 1

CSE 544 - Fall 2007

Heap File Implementation 1

Header

page

Data

page

Data

page

Data

page

Data

page

Data

page

Data

page

Linked list of pages:

Data

page

Data

page

Full pages

Pages with some free space

Heap File Implementation 2

CSE 544 - Fall 2007

Heap File Implementation 2

Data

page

Data

page

Data

page

Better: directory of pages

Directory

Header page

Directory contains free-space count for each page.

Faster inserts for variable-length records

Ordered Files
• Records are stored in order based on the value of an

ordering field

73

Ordered Files
• Records are stored in order based on the value of an

ordering field
• Searches are faster, using binary search

• O(log n) steps in worst case, for ordering field only
• No benefit for accesses on other fields (O(n))

• Inserts, deletes, and updates are slower in the worst case,
since order must be maintained (O(n))

• Oracle does not support ordered files, but some
other DBMSs do

74

Record field type

• Record field type defines their length
• Fixed-length e.g., INTEGER, BIGINT, CHAR(n), DATE,…
• Variable –length: VARCHAR(n), CLOB(n),…

Page Formats

• Issues to consider
• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
• Composed of fixed length fields
• Composed off variable length fields

Record field type

• Record field type defines their length
• Fixed-length e.g., INTEGER, BIGINT, CHAR(n), DATE,…
• Variable –length: VARCHAR(n), CLOB(n),…

Fixed-length fieldsFixed-Length Fields

•  Fixed-length record: each field has a fixed length and
the number of fields is also fixed
–  fields can be stored consecutively
–  given the address of the record (b), the address of a particular

field can be calculated using information about lengths of
preceding fields (li)

–  this information is available from the DBMS system catalog

28

f1 f2 f3 f4

l1 l2 l3 l4

base address
(b)

address = b + l1 +
l2

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Variable-length Fields
Variable-Length Fields

•  Multiple variants exist to store records that contain
variable- length fields
1.  use a special delimiter symbol ($) to separate record fields:

accessing field fn requires a scan over the bytes of fields f1…fn-1

2.  for a record of n fields, use an array of n + 1 offsets pointing into
the record (the last array entry marks the end of field fn)

29

f1 f2 f3 f4 $ $ $

f1 f2 f3 f4 f2 f3 f4 r⊥" f1

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Delimiter Vs ArrayDelimiter vs. Array
•  Array approach is typically superior

–  array overhead translates to direct access to any field
–  clean and compact way to deal with null values (NULL in SQL)

by simply comparing pointers to beginning and end of field

30

f1 f2 f4 $ $ $

f1 f2 f4 f2 f3 f4 r⊥" f1

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Record FormatsRecord Formats
•  Another popular record format to support variable-length

fields is a combination of the delimiter and array
approach
–  variable-length fields are stored at the end of the record
–  fixed-length fields and pointers to variable-length fields are stored

sequentially, starting at the beginning of the record

•  Note that it may even make sense to use variable-length
records to store fixed-length records
–  support for null values (see above)
–  schema evolution, i.e., adding or removing columns

31

f1 f2 f3 f4 f3

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Page Formats

• Issues to consider
• 1 page = 1 disk block = fixed size (e.g. 8KB)

• Records:
• Composed of fixed length fields
• Composed off variable length fields

Page Formats Approach 1
• Fixed-length records: packed representation

• N = Number of records, s = size of record, f = file

CSE 544 - Fall 2007

Page Format Approach 1

Fixed-length records: packed representation

Free space N

SlotNSlot2Slot1

Problems ?
Number of records

How to handle variable-length records?

Need to move records for each deletion, changing RIDs

Fixed-Length Records
•  All records on the page (in the file) are the same size s

–  getRecord(f, <p, n>): given the rid <p, n> we know that the
record is to be found at (byte) offset n × s on page p

–  deleteRecord(f, <p, n>): copy the bytes of the last occupied
slot on page p to offset n × s, mark slot as free (page is packed,
i.e., all occupied slots appear together at the start if the page)

–  insertRecord(f, r): find a page p with free space >= s (see
previous discussion) and copy r to the first free slot on p, then
mark the slot as occupied

17

! Packed pages and deletions

One problem with packed pages remains as calling deleteRecord(f, <p,
n>) modifies the rid of a different record <p, n’> on the same page
if any external references to this record exist, we need to chase through

the whole database and update rid references <p, n’> � <p, n>… Bad!

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Solution1: Free Slot Bitmap

Free Slot Bitmap

•  Avoid record copying and therefore rid modifications
–  deleteRecord(f, <p, n>) simply needs to set bit n in bitmap to 0
–  no other rids affected

18

" Page header or trailer?

In both page organization schemes, we have positioned the page header at
the end of the page. How would you justify this design decision?

packed
slot 0
slot 1

slot N-1

. . .

N

unpacked with
bitmap

slot 2

slot 0
slot 1

slot M-1

slot 2
. . .

M 1 1 0

0 1 M-1

free
spac

e

page
header

number
of slots number of

records

Slides Credit: Michael Grossniklaus – Uni-Konstanz

Storage Manager

• Process data with a
simple query.

• Access methods:
Organize data to
support fast access to
desired subsets of
records.

• Buffer manager: Caches
data in memory.
Reads/writes data
to/from disk as needed

• Disk-space manager:
Allocates space on disk
for files/access methods

Executor

Access Methods:
HeapFile

Buffer Manager

Disk Space Mgr.

Spatial Control
(Using raw disk interface)
• Overview

– DBMS issues low-level storage requests directly to disk device
• Advantages
• DBMS can ensure that important queries access data sequentially
• Can provide highest performance

• Disadvantages
• Requires devoting entire disks to the DBMS
• Reduces portability as low-level disk interfaces are OS specific

MPCS 53003

Spatial Control
(Using OS Files)
• Overview
• DBMS creates one or more very large OS files

• Advantages
• Allocating large file on empty disk can yield good physical locality

• Disadvantages
• OS can limit file size to a single disk
• OS can limit the number of open file descriptors
• But these drawbacks have mostly been overcome by modern OSs

MPCS 53003

Historical Perspective (1981)

• Recognizes mismatch problem between OS files and DBMS needs
• If DBMS uses OS files and OS files grow with time, blocks get scattered
• OS uses tree structure for files but DBMS needs its own tree structure

• Other proposals at the time
• Extent-based file systems
• Record management inside OS

MPCS 53003

Commercial Systems

• Most commercial systems offer both alternatives
• Raw device interface for peak performance
• OS files more commonly used

• In both cases, we end-up with a DBMS file abstraction implemented
on top of OS files or raw device interface

MPCS 53003

Temporal Control (Buffer Manager)

• Correctness problems
• DBMS needs to control when data is written to disk in order to provide

transactional semantics (we will study transactions later)
• OS buffering can delay writes, causing problems when crashes occur

• Performance problems
• OS optimizes buffer management for general workloads
• DBMS understands its workload and can do better
• Areas of possible optimizations

• Page replacement policies
• Read-ahead algorithms (physical vs logical)
• Deciding when to flush tail of write-ahead log to disk

MPCS 53003

Historical Perspective (1981)

• Problems with OS buffer pool management long recognized
• Accessing OS buffer pool involves an expensive system call
• Faster to access a DBMS buffer pool in user space
• LRU replacement does not match DBMS workload
• DBMS can do better
• OS can do only sequential prefetching, DBMS knows which page it needs next

and that page may not be sequential
• DBMS needs ability to control when data is written to disk

MPCS 53003

Commercial Systems

• DBMSs implement their own buffer pool managers
• Modern file systems provide good support for DBMSs
• Using large files provides good spatial control
• Using interfaces like the mmap suite

• Provides good temporal control
• Helps avoid double-buffering at DBMS and OS levels

MPCS 53003

Buffer Manager

CSE 544 - Fall 2007

Buffer Manager

Disk

Main

memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds

to 1 disk block

Disk is a collection

of blocks

Disk space manager

Buffer pool manager

Files and access methods

MPCS 53003

SimpleDB

• Demo Git/Eclipse Setup
• Go through an overview of SimpleDB

What you should NOT do

• Modify given classes
• Removing, renaming, relocating to other packages
• Modify given methods
• Changing parameters or return types
• Use third-party libraries
• Except the ones under lib/directory
• You can do everything using regular Java libraries

What you can do

• Add code to existing classes/methods
• Re-implement provided methods

• Run system test cases
• Under test/systemtest
• I’ll grade using additional tests

• Add new classes/interfaces/methods/packages
• Haven’t found the need to do for Lab 1 and 2.

• Just don’t destroy correctness or specification!
• Find bugs!
• Write up
• Explain why do you implement in a particular way

• I’ll read your code
• Reading horrible code is horrible, so spend some time polishing
• Passing all the test cases may not necessary mean you’ll get a high score

Overview	of	SimpleDB

8

Database

• A single database
• One schema
• List of tables

• References to major components
• Global instance of Catalog
• Global instance of BufferPool

Database

•A	single	database
• One	schema
• List	of	tables

•References	to	major	components
• Global	instance	of	Catalog
• Global	instance	of	BufferPool

9

Catalog

• Stores metadata about tables in the database
• void addTable(DbFile d, TupleDesc d)
• DbFile getTable(int tableid)
• TupleDesc getTupleDesc(int tableid) •...

• NOT persisted to disk
• Catalog info is reloaded every time SimpleDB starts up

Catalog

•Stores	metadata	about	tables	in	the	database
• void	addTable(DbFile d,	TupleDesc d)
• DbFile getTable(int tableid)
• TupleDesc getTupleDesc(int tableid)
• …

•NOT	persisted	to	disk
• Catalog	info	is	reloaded	every	time	SimpleDB starts	up

10

