CSC553: Homework 3

Due: May $8^{\text {th }}, 2022$

This assignment is on relational algebra, logical plan equivalence, and indexes.

1 Iterators

Write the iterator algorithm for grouping operator and set intersection. Provide only pseudo-code.

2 One-pass algorithms

Give a one pass algorithm for left outer join between $R(x, y)$ and $S(y, z)$ assuming R fits in memory.

3 Joins

Consider the join between R and S on $\mathrm{R} \bowtie_{R . a=S . b} \mathrm{~S}$, given the following information about the relations to be joined. The cost metric is the number of page l/Os unless otherwise noted, and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.
Relation S contains 2000 tuples and also has 10 tuples per page.
Attribute b of relation S is the primary key for S .
Both relations are stored as simple heap files. Neither relation has any indexes built on it.

52 buffer pages are available.

1. What is the cost of joining R and S using a page-oriented simple nested loops join? What is the minimum number of buffer pages required for this cost to remain unchanged?
2. What is the cost of joining R and S using a block nested loops join? What is the minimum number of buffer pages required for this cost to remain unchanged?
3. What is the cost of joining R and S using a sort-merge join? What is the minimum number of buffer pages required for this cost to remain unchanged?
4. What is the cost of joining R and S using a hash join? What is the minimum number of buffer pages required for this cost to remain unchanged?
5. What would be the lowest possible I/O cost for joining R and S using any join algorithm, and how much buffer space would be needed to achieve this cost? Explain briefly.
6. How many tuples does the join of R and S produce, at most, and how many pages are required to store the result of the join back on disk?

4 External Merge Sort

You are trying to sort the S table which has 200 pages. Suppose that during Pass 0, you have 10 buffer pages available to you, but for Pass 1 and onwards, you only have 5 buffer pages available.

1. How many sorted runs will be produced after each pass?
2. How many pages will be in each sorted run for each pass?
3. How many I/Os does the entire sorting operation take?

5 Partitioned Hash Join

Consider relations R and S with $B(R)=1000$ and $B(S)=800$. Explain how a DBMS could efficiently join these two relations given that only 21 pages can fit in main memory at a time. Present a solution that uses a hash-based algorithm. Your presentation should be detailed: specify how many pages are allocated in memory and what they are used for; specify what exactly is written to disk and when.

